Criterios de idoneidad epistémica sobre el área en el currículo chileno de Educación Primaria

Authors

DOI:

https://doi.org/10.30612/tangram.v7i4.17913

Keywords:

área de figuras planas, idoneidad epistémica, directrices curriculares

Abstract

The purpose of this paper is to identify the epistemic suitability of the curricular guidelines of Primary Education in Chile, linked to area measurement processes. For this purpose, tools of the Ontosemiotic Approach to Mathematical Knowledge and Instruction are used the Didactic Suitability criteria. A qualitative methodology and a content analysis are performed to propose aspects to be considered to assess the epistemic suitability of Chilean curricular documents. The results show a low suitability in the epistemic facet of the curricular guidelines, since these documents do not propose problem situations that allow relating and coordinating different meanings of the area. Thus, some recommendations are suggested on how to address this deficiency.

Downloads

Download data is not yet available.

Author Biographies

Sofia Caviedes Barrera, Universidad de Los Lagos

Doctora en Educación, línea de Didáctica de la Matemática, por la Universitat Autònoma de Barcelona, España.

Academica del Departamento de Ciencias Exactas, Universidad de Los Lagos

Jocelyn Díaz Pallauta, Universidad de Los Lagos

Doctora en Educación, línea de Didáctica de la Matemática por la Universidad de Granada, España

Académica del Departamento de Ciencias Exactas de la Universidad de los Lagos, Chile

References

Arteaga, P. (2011). Evaluación de conocimientos sobre gráficos estadísticos y conocimientos didácticos de futuros profesores [Tesis doctoral, Universidad de Granada, Granada].

Barrett, J. E., Cullen, C. J., Miller, A. L., Eames, C. L., Kara, M., y Klanderman, D. (2017). Area in the middle and later elementary grades. En J. E. Barrett, D. H. Clements, y J. Sarama (Eds.), Children’s measurement: A longitudinal study of children’s knowledge and learning of length, area, and volume. Journal for research in mathematics education monograph series (Vol. 16, pp. 105–127). Reston, VA: National Council of Teachers of Mathematics.

Beltrán-Pellicer, P., Godino, J. D., y Giacomone, B. (2018). Elaboración de indicadores específicos de idoneidad didáctica en probabilidad: aplicación para la reflexión sobre la práctica docente. Bolema, 32(61), 526-548. https://doi.org/10.1590/1980-4415v32n61a11.

Caviedes, S., Gamboa, G. D., y Badillo, E. (2020). Procedimientos utilizados por estudiantes de 13-14 años en la resolución de tareas que involucran el área de figuras planas. Bolema: Boletim de Educação Matemática, 34(68), 1015-1035. https://doi.org/10.1590/1980-4415v34n68a09.

Caviedes, S., de Gamboa, G., y Badillo, E. (2021). Mathematical objects that configure the partial area meanings mobilized in task-solving. International. Journal of Mathematical Education in Science and Technology, 54(6), 1092-1111. https://doi.org/10.1080/0020739X.2021.1991019.

Caviedes, S. (2022). Resolución de tareas que involucran el área de figuras planas por estudiantes de sexto de primaria. Números: revista de didáctica de las matemáticas. (110), 25-39.

Clements, D. H., Sarama, J., Van Dine, D. W., Barrett, J. E., Cullen, C. J., Hudyma, A., Dolgin, R., Cullen, A. L., y Eames, C. L. (2018). Evaluation of three interventions teaching area measurement as spatial structuring to young children. The Journal of Mathematical Behavior, 50(23), 23–41. https://doi.org/10.1016/j.jmathb.2017.12.004.

Clements, D. H. y Stephan, M. (2004). Measurement in pre-K to grade 2 mathematics. Engaging young children in mathematics. En D.H. Clements y J. Sarama (Eds.), Engaging young children in mathematics: Standards for early childhood mathematics education (pp. 299–320). Erlbaum.

Cohen, L., Manion, L., y Morrison, K. (2007). Research methods in education (6th ed). Routledge.

Cotrado, B., Burgos, M., y Beltrán-Pellicer, P. (2022). Idoneidad didáctica de materiales curriculares oficiales peruanos de educación secundaria en probabilidad. Bolema: Boletim de Educação Matemática, 36, 888-922. https://doi.org/10.1590/1980-4415v36n73a13.

Cruz, A., Gea, M. M., Giacomone, B., y Godino, J. D. (2017). Criterios de idoneidad cognitiva para el estudio de la geometría espacial en educación primaria. Congreso Iberoamericano de Educación Matemática (pp. 1-8). España.

Font, V., Godino, J. D. y D'Amore, B. (2007). An onto-semiotic approach to representations in mathematics education. For the Learning of Mathematics, 27(2), 2-7.

Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Reidel.

Godino, J. (2013). Indicadores de la idoneidad didáctica de procesos de enseñanza y aprendizaje de las matemáticas. Cuadernos de Investigación y Formación en Educación Matemática, 11, 111-132.

Godino, J. D., Batanero, C. y Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM, 39(1-2), 127-135.

Godino, J., Batanero, C., y Burgos, M. (2023). Theory of didactical suitability: An enlarged view of the quality of mathematics instruction. Eurasia, 18(1), 1-20. https://doi.org/10.29333/ejmste/13187.

Godino, J., Rivas, H., y Arteaga, P. (2012). Inferencia de indicadores de idoneidad didáctica a partir de orientaciones curriculares. Práxis Educativa, 7(2), 331-354.

Gutiérrez, A. (2004): Investigación en didáctica de la geometría: La medida de áreas. En Luengo, R. (ed.), Líneas de investigación en educación matemática (vol. 1, pp. 83-108). Federación Española de Sociedades de Profesores de Matemáticas.

Hong, D. S., Choi, K. M., Runnalls, C., y Hwang, J. (2018). Do textbooks address known learning challenges in area measurement? A comparative analysis. Mathematics Education Research Journal, 30, 325-354. https://doi.org/10.1007/s13394-018-0238-6.

Kordaki, M. y Potari, D. (1998). A learning environment for the conservation of area and its measurement: a computer microworld. Computers & Education, 31(4), 405-422.

Kamii, C. y Kysh, J. (2006). The difficulty of “lengthxwith”: Is a square the unit of measurement? Journal of Mathematical Behavior, 25, 105-115. https://doi.org/10.1016/j.jmathb.2006.02.001.

Kospentaris, G., Spyrou, P. y Lappas, D. (2011). Exploring students’ strategies in area conservation geometrical tasks. Educational Studies in Mathematics, 77(1), 105-127. https://doi.org/10.1007/s10649-011-9303-8.

MINEDUC. (2013a). Programa de estudio cuarto año básico: Matemática. Unidad de Currículum y Evaluación.

MINEDUC. (2013b). Programa de estudio quinto año básico: Matemática. Unidad de Currículum y Evaluación.

MINEDUC. (2013c). Programa de estudio cuarto año básico: Matemática. Unidad de Currículum y Evaluación.

MINEDUC. (2018). Bases curriculares Primero a Sexto Básico. Unidad de Currículum y Evaluación.

Pallauta, J. D., y Batanero, C. (2024). Guía para el análisis de la idoneidad epistémica y cognitiva de lecciones sobre tablas estadísticas en libros de texto. Bolema: Boletim de Educação Matemática, 38, e230088. https://doi.org/10.1590/1980-4415v38a230088.

Sarama, J. y Clements, D. H. (2009). Early childhood mathematics education research: Learning trajectories for young children. Routledge. https://doi.org/10.4324/9780203883785.

Smith, J. P., Males, L. M. y Gonulates, F. (2016). Conceptual limitations in curricular presentations of area measurement: One nation’s challenges. Mathematical Thinking and Learning, 18(4), 239-270. https://doi.org/10.1080/10986065.2016.1219930.

Stephan, M., y Clements, D. H. (2003). Linear and area measurement in pre-kindergarten to grade 2. Learning and teaching measurement, 5(1), 3-16.

Zacharos, K. (2006). Prevailing educational practices for area measurement and students’ failure in measuring areas. The Journal of Mathematical Behavior, 25(3), 224-239. https://doi.org/10.1016/j.jmathb.2006.09.003.

Published

2024-12-23

How to Cite

Barrera, S. C., & Pallauta, J. D. (2024). Criterios de idoneidad epistémica sobre el área en el currículo chileno de Educación Primaria . TANGRAM - Revista De Educação Matemática, 7(4), 2–24. https://doi.org/10.30612/tangram.v7i4.17913

Issue

Section

Article