School geometry and mathematical practices: a case
DOI:
https://doi.org/10.30612/tangram.v6i2.16920Keywords:
Mathematics teaching., Geometry., Digital technology.Abstract
In the context of the increasingly widespread presence of Dynamic Geometry Environments in mathematics classrooms in many countries, it was proposed to identify and classify the mathematical practices that secondary school students develop with a Dynamic Geometry System in class to resolve problems about congruence of triangles via geometrical transformations. This article presents the identification and classification of the repertoire of mathematical practices using GeoGebra of one of the cases analyzed in a public technical secondary school in Argentine. In this study a qualitative methodological perspective was used by means of a multiple-case study. The results help to understanding the teaching and learning processes of geometry mediated with Dynamic Geometry System, in particular from the recognition of the mathematical practices developed in tasks about a geometric concept that is defined as geometric transformation.
Downloads
References
Arzarello, F. (2001). Dragging, perceiving and measuring: physical practices and theoretical exactness in Cabri-environments (conferencia plenaria). Cabriworld 2. Montreal, Canadá. https://patrickmoisan.net/documents/publications/cw2001/2001/contributions/Arzarello.pdf
Ball, D. (2002). Mathematical proficiency for all students: toward a strategic research and development program in mathematics education. RAND Education/Science and Technology Policy Institute. https://www.rand.org/pubs/monograph_reports/MR1643.html
Drijvers, P., Mariotti, M., Olive, J. y Sacristán, A. (2010). Introduction to Section 2. En C. Hoyles y J. B. Lagrange (eds.) Mathematics education and technology-rethinking the terrain. The 17th ICMI Study (pp. 89-132). Springer. https://doi.org/10.1007/978-1-4419-0146-0_6
Escudero, I. (2003a). La relación entre el conocimiento profesional del profesor de matemáticas de enseñanza secundaria. La semejanza como objeto de enseñanza-aprendizaje (tesis doctoral no publicada). Universidad de Sevilla.
Escudero, I. (2003b). La semejanza como objeto de enseñanza-aprendizaje en la relación entre el conocimiento profesional del profesor de matemáticas de enseñanza secundaria y su práctica (ponencia). VII Simposio de la Sociedad Española de Educación Matemática, Granada, España. https://www.uv.es/angel.gutierrez/aprengeom/archivos2/Escudero03.pdf
Escudero, I. (2005). Un análisis del tratamiento de la semejanza en los documentos oficiales y textos escolares de matemáticas en la segunda mitad del siglo XX. Enseñanza de las Ciencias, 23(3), 379-392. https://ensciencias.uab.cat/article/view/v23-n3-escudero/1736
Fiorentini, D. y Lorenzato, S. (2010). Investigación en Educación Matemática: recorridos históricos y metodológicos. Autores Associados.
Hollebrands, K., Laborde, C. y SträBer, R. (2007). The learning of geometry with technology at the secondary level. En M. K. Heid y G. Blume (eds.), Handbook of research on technology in the learning and teaching of mathematics: syntheses and perspectives (pp. 155-205). Information Age Publishing.
Leung, A., Chan, Y. y Lopez-Real, F. (2006). Instrumental genesis in dynamic geometry environments (ponencia). Seventeenth Study Conference of the International Commission on Mathematical Instruction. Institute of Technology and Didirem Université Paris 7.
Ministerio de Educación de Río Negro (2007). Transformación de la escuela secundaria rionegrina. Gobierno de la Provincia de Río Negro. Argentina.
Moreno-Armella, L. y Santos-Trigo, M. (2008). Mathematical practices and new potential instructional trajectories in a dynamic environment (ponencia). 11th International Congress on Mathematical Education, Monterrey, México.
Olive, J. y Makar, K. (2010). Mathematical knowledge and practices resulting from access to digital technologies. En C. Hoyles y J. B. Lagrange (eds.), Mathematics education and technology-rethinking the terrain. The 17th ICMI study (pp. 133-177). Springer. https://doi.org/10.1007/978-1-4419-0146-0_8
Olivero, F. (1999). Cabri-Géomètre as a mediator in the process of transition to proofs in open geometric situations (ponencia). 4th International Conference on Technology in Mathematics Teaching, Plymouth, United Kingdom. https://telearn.archives-ouvertes.fr/file/index/docid/190190/filename/Olivero_1999.pdf
Pérez, C. (2007). Transformaciones lineales, afines y fractales en un ambiente computacional. Revista Científica de la Universidad Pedagógica de Matanzas "Juan Marinello", edición especial. https://www.academia.edu/33804322/Transformaciones_lineales_afines_y_fractales_en_un_ambiente_computacional.
Pérez, C. (2014). Enfoques teóricos en investigación para la integración de la tecnología digital en la educación matemática. Perspectiva Educacional, 53(2), 129-150. https://doi.org/10.4151/07189729-Vol.53-Iss.2-Art.200
Pérez, C. (2019). Prácticas matemáticas y tipos de razonamientos con SGD para la congruencia de triángulos: un estudio de caso desde la génesis instrumental (tesis doctoral no publicada). Universidad Nacional de Córdoba.
Rabardel, P. (1995). Los hombres y las tecnologías. Visión cognitiva de los instrumentos contemporáneos (M. Acosta, trad). División de publicaciones Universidad Industrial de Santander.
Santos-Trigo, M. y Moreno-Armella, L. (2006). Students’ development of mathematical practices based on the use of computational technologies. En C. Hoyles, J. B. Lagrange, L. H. Son y N. Sinclair (eds.), Proceedings of the Seventeenth Study Conference of the International Commission on Mathematical Instruction (pp. 495-502). Hanoi Institute of Technology and Didirem Université Paris 7.
Sinclair, N., Arzarello, F., Trigueros, M., Lozano, M., Dagiene, V., Behrooz, E. y Jackiw, N. (2010). Implementing Digital Technologies at a National Scale. En C. Hoyles y J. B. Lagrange (eds.), Mathematics education and technology-rethinking the terrain. The 17th ICMI study (pp. 61-78). Springer. https://doi.org/10.1007/978-1-4419-0146-0_5
Stake, R. (1995). The art of case study research. Sage Publications.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Authors must accept the publication rules when submitting the journal, as well as agree to the following terms:
(a) The Editorial Board reserves the right to make changes to the Portuguese language in the originals to maintain the cultured standard of the language, while respecting the style of the authors.
(b) Authors retain the copyright and grant the journal the right to first publication, with the work simultaneously licensed under the Attribution-NonCommercial-ShareAlike 3.0 Brazil (CC BY-NC-SA 3.0 BR) that allows: Share - copy and redistribute the material in any medium or format and Adapt - remix, transform, and create from the material. CC BY-NC-SA 3.0 BR considers the following terms:
- Attribution - You must give the appropriate credit, provide a link to the license and indicate whether changes have been made. You must do so under any reasonable circumstances, but in no way that would suggest that the licensor supports you or your use.
- NonCommercial - You may not use the material for commercial purposes.
- Sharing - If you remix, transform, or create from material, you must distribute your contributions under the same license as the original.
- No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything that the license permits.
(c) After publication, authors are allowed and encouraged to publish and distribute their work online - in institutional repositories, personal page, social network or other scientific dissemination sites, as long as the publication is not for commercial purposes.