High school students’ reasoning when facing a binomial distribution
DOI:
https://doi.org/10.30612/tangram.v3i2.10888Keywords:
Binomial distribution. Reasoning. High school students.Abstract
The aim of this study we to analyze the students’ intuitive understanding of the binomial distribution. We analyze the responses by 127 students to a task where students should provide four values of the binomial distribution and justify the values provided. We analyze the mean, rank of the four values in the response, and classify the arguments using content analysis. Most students provided values with mean and rank in the acceptable interval suggesting a distributional reasoning. Among the correct arguments, the correct estimation of probability stood out (56.7% of students), as well as the observation of convergence and variability of the distribution (40.2%) and some students provide more than an argument. We also found biases, such as the equiprobability bias or erroneous beliefs about randomness. Finally, 22% of students were unable to provide a justification.Downloads
References
Batanero, C., Chernoff, E., Engel, J., Lee, H. y Sánchez, E. (2016). Research on teaching and learning probability. ICME-13. Topical Survey series. New York: Springer.
Batanero, C. y Díaz, C. (2007). Meaning and understanding of mathematics. The case of probability. En J. P. Van Bendegen y K. François (Eds.), Philosophical Dimmensions in Mathematics Education (pp. 107-128). Nueva York: Springer.
Begué, N., Batanero, C. y Gea, M. M. (2019). Argumentos de los estudiantes de bachillerato en la generación de muestras de la distribucion binomial. En J. M. Contreras, M. M. Gea, M. M. López-Martín y E. Molina-Portillo (Eds.), Actas del Tercer Congreso Internacional Virtual de Educación Estadística (pp. 1-10). Granada: Universidad de Granada.
Cañizares, M. J. y Batanero, C. (1997). Influencia del razonamiento proporcional y de las creencias subjetivas en la comparación de probabilidades. UNO. Revista de didáctica de las matematicas, 14(1), 99-114.
Chaput, B., Girard, J. C. y Henry, M. (2011). Frequentist approach: modelling and simulation in statistics and probability teaching. En C. Batanero, G. Burrill, C. Reading (Eds.), Teaching statistics in school mathematics. Challenges for teaching and teacher education (pp. 85-95). New York: Springe.
Fischbein, E., Sainati, M. y Sciolis, M. (1991). Factors affecting probabilistics judgements in children and adolescents. Educational Studies in Mathematics, 22(6), 523-549.
Gal, I. (2005). Towards “probability literacy” for all citizens: Building blocks and instructional dilemmas. En G. A. Jones (Ed.), Exploring probability in school. Challenges for teaching and learning (pp. 39-63). Dordrecht: Kluwer.
Godino, J. D. (2002). Un enfoque ontológico y semiótico de la cognición matemática. Recherches en Didactique des Mathématiques, 22(2-3), 237-284.
Godino, J. D. (2017). Construyendo un sistema modular e inclusivo de herramientas teóricas para la educación matemática. En J. M. Contreras, P. Arteaga, G. R. Cañadas, M.M. Gea, B. Giacomone y M. M. López-Martín (Eds.), Actas del Segundo Congreso International Virtual sobre el Enfoque Ontosemiótico del Conocimiento y la Instrucción Matemáticos (pp. 1-20). Granada: Universidad de Granada.
Gómez, E., Batanero, C. y Contreras, C. (2014). Conocimiento matemático de futuros profesores para la enseñanza de la probabilidad desde el enfoque frecuencial. BOLEMA. Boletim de Educação Matemática, 28(48), 209-229.
Kahneman, D., Slovic, P. y Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. New York: Cambridge University Press.
Konold, C. (1989). Informal conceptions of probability. Cognition and Instruction, 6, 59-98.
Krippendorff, K. (2013). Content analysis: an introduction to its methodology. Londres: Sage.
Landín; P. y Sánchez, E. (2010). Niveles de razonamiento probabilístico de estudiantes de bachillerato frente a tareas de distribución binomial. Educaçao Matemática Pesquisa, 12(3), 598-618.
Lecoutre, M. P. (1992). Cognitive models and problem spaces in "purely random" situations. Educational Studies in Mathematics, 23(6), 557-568.
Mayén, S. y Salazar, A. (2014). Niveles de razonamiento en la resolución de tareas de tipo binomial. En L. Andrade (Ed.), Memorias I Encuentro Colombiano de Educación Estocástica (pp. 88-97). Bogotá: Asociación Colombiana de Educación Estocástica.
MECD. (2015). Real Decreto 1105/2014, de 26 de diciembre, por el que se establece el currículo básico de la Educación Secundaria Obligatoria y del Bachillerato. Madrid: Ministerio de Educación, Cultura y Deporte.
Rolleri, J. L. (2002). La probabilidad como grado de posibilidad. Crítica: Revista Hispanoamericana de Filosofía, 34(101), 3-26.
Sánchez, E. y Landín, P. (2011). Fiabilidad de una jerarquía para evaluar el razonamiento probabilístico acerca de la distribución binomial. En M. Marín, G. Fernández, L. Blanco y M. Palarea (Eds.), Investigación en Educación Matemática XV (pp. 533-542). Ciudad Real: SEIEM.
Serrano, L. (1996). Significados institucionales y personales de objetos matemáticos ligados a la aproximación frecuencial de la enseñanza de la probabilidad (Tesis doctoral). Universidad de Granada, Granada.
Shaughnessy, J. M., Ciancetta, M. y Canada, D. (2004). Types of student reasoning on sampling tasks. En M. J. Høines y A. B. Fuglestad (Eds.), Proceedings of the 28th meeting of the International Group for Psychology and Mathematics Education (Vol. 4, pp. 177–184). Bergen: Bergen University College Press.
Tversky, A. y Kahneman, D. (1974). Judgement under uncertainity: heurístics and biases. Science, 185, 1124-1131.
Van Dooren, W., De Bock, D., Depaepe, F., Janssens, D. y Verschaffel, L. (2003). The illusion of linearity: expanding the evidence towards probabilistic reasoning. Educational Studies in Mathematics, 53(2), 113-138.
Downloads
Published
How to Cite
Issue
Section
License
Authors must accept the publication rules when submitting the journal, as well as agree to the following terms:
(a) The Editorial Board reserves the right to make changes to the Portuguese language in the originals to maintain the cultured standard of the language, while respecting the style of the authors.
(b) Authors retain the copyright and grant the journal the right to first publication, with the work simultaneously licensed under the Attribution-NonCommercial-ShareAlike 3.0 Brazil (CC BY-NC-SA 3.0 BR) that allows: Share - copy and redistribute the material in any medium or format and Adapt - remix, transform, and create from the material. CC BY-NC-SA 3.0 BR considers the following terms:
- Attribution - You must give the appropriate credit, provide a link to the license and indicate whether changes have been made. You must do so under any reasonable circumstances, but in no way that would suggest that the licensor supports you or your use.
- NonCommercial - You may not use the material for commercial purposes.
- Sharing - If you remix, transform, or create from material, you must distribute your contributions under the same license as the original.
- No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything that the license permits.
(c) After publication, authors are allowed and encouraged to publish and distribute their work online - in institutional repositories, personal page, social network or other scientific dissemination sites, as long as the publication is not for commercial purposes.