O Conhecimento Especializado do Professor de Matemática no contexto da Divisão de Frações em uma Tarefa para a Formação
DOI:
https://doi.org/10.30612/tangram.v9i1.19232Palavras-chave:
Conhecimento Especializado. , Divisão de fração, Formação de ProfessorResumo
Este estudo centra-se no conhecimento revelado por professores de matemática num curso de formação sobre frações. Os professores resolveram uma tarefa focando estimativa, dificuldades dos alunos e recursos no contexto da divisão de frações. Os resultados sugerem que os professores enfrentam alguns desafios, como: estimar o resultado de divisão de frações e elencar possíveis dificuldades conceituais dos alunos, conhecimento a respeito de recursos e como utilizá-los para o ensino da divisão de frações. Esta pesquisa se faz relevante, pois alunos e professores apresentam dificuldades em relação à divisão de frações, principalmente no que se refere ao sentido de número fracionário, representação e unidade de referência.
Downloads
Referências
Andrés de Zaragoza, Juan (1515). Sumario breve de la práctica de la arithmética y todo el curso de larte mercantinol bien declarado: el qual se llama maestro de cuento. Impresor Juan Joffre.
Araújo, W. A. D. (2013). O uso do FRAC-SOMA 235 no processo de ensino e aprendizagem de frações para o ensino fundamental. In Anais do 11º Encontro Nacional de Educação Matemática (ENEM) (pp. 1–10). Curitiba, PR.
http://sbem.bruc.com.br/XIENEM/pdf/72_1718_ID.pdf
Ball, D. L. (1990). Prospective elementary and secondary teachers’ understanding of division. Journal for Research in Mathematics Education, 21(2), 132-144.
Bayound, J. M. (2011). A comparison of pre-service and experienced elementary teachers’ pedagogical content knowledge (PCK) of common error patterns in fractions. [Doctoral Thesis]. American University of Beirut, Beirut, Líbano.
Buys, K. (2008). Mental Arithmetic. In M. Huevel- Panhuizen, K. Buys, & A. Treffers (Eds.), Children Learning Mathematics: A Learning-Teaching trajectory with intermediate attainment targets for calculation with whole numbers in primary school (pp. 173-2020. Sense publishers.
Brasil (2018). Base Nacional Comum Curricular. Brasília-DF: Ministério da Educação.
Brocardo, J., Di, L., & Kraemer, J. (2003). Algoritmos e sentido do número. Educação Matemática, 75, 11-15.
Bulgar, S. (2003). Using Research to Inform Practice: Children Make Sense of Division of Fractions. International Group for the Psychology of Mathematics Education, 2, 157-164.
Carrapiço, R. (2015). Cálculo mental com números racionais: Um estudo com alunos do 6. ano de escolaridade [Tese de doutorado]. Instituto de Educação da Universidade de Lisboa, Lisboa.
Carrillo, J., Climent, N., Montes, M., Contreras, L. C., Flores-Medrano, E., Escudero-Ávila, D., & Muñoz-Catalán, M. C. (2018). The mathematics teacher’s Specialised knowledge (MTSK) model. Research in Mathematics Education, 20(3), 236-253.
Climent, N. (2002). El desarrollo profesional del maestro de primaria respecto de la enseñanza de la matemática. [Tese de Doutorado]. Universidad de Huelva.
Contreras, M. (2012). Problemas multiplicativos relacionados con la división de fracciones: un estudio sobre su enseñanza y aprendizaje. [Tese de doutorado]. Universidad de Valencia, Valencia.
Cooney, T. J. (1994). Research on teacher education. In search of common ground. Journal for Research in Mathematics Education, 25(3), 355-376.
Figueiredo, H. A., & dos Santos Soares, F. (2016). Utilizando Problemas de Fermi para Estimar. Encontro Nacional de Educação Matemática, Brasília.
Fontanive, N. S., Klein, R., & Rodrigues, S. S. (2012). Boas práticas docentes no ensino da Matemática. Estudos & Pesquisas Educacionais, 3, 195-277.
Flores, P. (2013). ¿Por qué multiplicar en cruz? Curso de formación inicial de profesores de matemáticas en la Universidad. [Artigo]. 7º Congreso Iberoamericano de Educación Matemática, Montevideo, Uruguay.
García, A. I. M. (2013). Conocimiento profesional de un grupo de profesores sobre la división de fracciones. [Dissertação de Mestrado]. Universidad de Granada, Granada.
Giongo, I. M., Quartieri, M. T., & Rehfeldt, M. J. H. (2013). Problematizando o uso da Estimativa em aulas de Matemática da escola básica. [Artigo]. 11º Encontro Nacional de Educação Matemática, Curitiba, Paraná.
Godino, J.D., Batanero, C. Font, V., Contreras, A., & Wilhelmi, M. R. (2016). The theory of didactical suitability: Networking a system of didactics principles for mathematics education form different theoretical perspectives. [Article]. 13th International Congress on Mathematical Education, Hamburg, Germany.
Hiebert, J. (2003). What research says about the NCTM standards. In J. Kilpatrick, G. Martin, & D. Schifter (Eds.), A research companion to Principles and Standards for School Mathematics (pp. 5–26). Reston, VA: National Council of Teachers of Mathematics.
Huinker D. (2002). Examining dimensions of fraction operation sense. In B. Litwiller (Ed.) Making sense of fractions, ratios, and proportions. National Council of Teachers of Mathematics.
Kelly, C. (2006). Using manipulatives in mathematical problem solving: A performance-based analysis. The Mathematics Enthusiast, 3. https://doi.org/10.54870/1551-3440.1049.
Kieren, T. E. (1980). Five Faces of Mathematical Knowledge Building. Department of Secondary Education, University of Alberta.
Lampert, M. (1988). What can research on teacher education tell us about improving quality in mathematics education? Teaching and Teacher Education, 4(2), 157-170.
Li, Y.; Kulm, G. (2008). Knowledge and confidence of pre-service mathematics teachers: the case of fraction division. ZDM, 40(5), 833-843.
Lo, J. J., & Luo, F. (2012). Prospective elementary teachers’ knowledge of fraction division. Journal of Mathematics Teacher Education, 15(6), 481-500 https://link.springer.com/journal/10857
Lopes, A. J. (2008). O que nossos alunos podem estar deixando de aprender sobre frações, quando tentamos lhes ensinar frações. Bolema, 21(31) 1-22.
Lubinski, C. A.; Fox, T.; Thomason, R. (1998). Learning to make sense of division of fractions: One K-8 preservice teacher’s perspective. School Science and Mathematics, 98(5), 247-251. https://www.semanticscholar.org/paper/Learning-to-Make-Sense-of-Division-of-Fractions%3A-Lubinski-Fox/241a78189841638524ae1776410ce0dd95216795.
Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Lawrence Erlbaum.
Menezes; Ribeiro (2023). Pensar e fazer pesquisa na formação de professor com foco no Conhecimento Interpretativo e Especializado do professor. Campinas: Cognoscere.
Monger, W., Sander, G. P., & Tortora, E. (2021). Estudo sobre o uso da estimativa na resolução de tarefas matemáticas por alunos do quinto ano do Ensino Fundamental. Revista De Educação Matemática, 18, e021027.
Moreira, I. M. B. (2013). O ensino das operações com frações envolvendo calculadora. In Anais do VII Congreso Iberoamericano de Educación Matemática (CIBEM) (pp. 2996–3005). Montevideo, Uruguai. http://www.cibem7.semur.edu.uy/7/actas/pdfs/1231.pdf
Moriel Junior, J. G. (2014). Conhecimento especializado para ensinar divisão de frações (Tese de doutorado, Universidade Federal de Mato Grosso).
Monteiro, C., & Pinto, H. (2005). A aprendizagem dos números racionais. Quadrante, 14(1), 89-107.
Mcintosh, A., Reys, B., & Reys, R. E. (1992). Uma proposta de quadro de referência para examinar o sentido básico de número. For the Learning of Mathematics, 1(3), 1-17.
Newton, K. J. (2008). An Extensive Analysis of Preservice Elementary Teachers’ Knowledge of Fractions. American Educational Research Journal, 45(4), 1080-1110.
Özel, S. (2013). An Analysis of In-service Teachers’ Pedagogical Content Knowledge of Division of Fractions. Anthropologist, 16(1-2), 1-5.
Parra, C. (1996). Cálculo Mental na escola primária. In C. Parra, I. Saiz, I. (Orgs.) Didática da Matemática. Artmed.
Perez, B. F. (2009). Materiales para la enseñanza de las fracciones. Revista Digital Innovación y Experiencias Educativas, 24, 1-8.
Pinto, H., & Ribeiro, M. (2013). Conhecimento e formação de futuros professores dos primeiros anos – o sentido de número racional. Da Investigação às Práticas, 33(1), 77–96.
Redmond, A. (2009). Prospective elementary teachers’ division of fractions understanding: A mixed methods study (Doctoral thesis, University of Phoenix).
Ribeiro, M. (2018). Das generalidades às especificidades do conhecimento do professor que ensina matemática: Metodologias na conceitualização (entender e desenvolver) do conhecimento interpretativo. In Abordagens teóricas e metodológicas nas pesquisas em educação matemática (Vol. 13, pp. 167–185). Biblioteca do Educador / SBEM.
Ribeiro, M., Almeida, A., & Mellone, M. (2021). Conceitualizando tarefas formativas para desenvolver as especificidades do conhecimento interpretativo e especializado do professor. Perspectivas da Educação Matemática, 14(35), 1–32.
Rizvi, N. F., & Lawson, M. J. (2007). Prospective teachers’ knowledge: Concept of division. International Education Journal, 8(2), 377–392. https://files.eric.ed.gov/fulltext/EJ834275.pdf
Segovia, I., Castro, E., Castro, E. y Rico, L. (1989). Estimación en cálculo y medida. Madrid: Síntesis.
Segovia, I., & Castro, E. (2009). La estimación en el cálculo y en la medida. Electronic Journal of Research in Educational Psychology, 17(1), 449-536.
Serrazina, L., & Rodrigues, M. (2018). Formação de professores e desenvolvimento do sentido do número. In R. F. Carneiro, A. C. Souza, & L. F. Bertini (Orgs.), A matemática nos anos iniciais do ensino fundamental: Práticas de sala de aula e de formação de professores (pp. 138-162). Sociedade Brasileira de Educação Matemática.
Sharp, J.; Garofalo, J.; Adams, B. (2002). Children’s development of meaningful fraction algorithms: a kid’s cookies and a puppy’s pill. In B. Litwiller, G. Bright (Orgs.), Making sense of fractions, ratios, and proportions: Yearbook (pp.18-28). NCTM.
Sharon, V. V., Swarthout, M. B. (2014, 27 February - 01 March). Evaluating instruction for developing conceptual understanding of fraction division. [Artigo]. 41th Annual Meeting of the Research Council on Mathematics Learning. San Antonio, Texas.
Siegler, R. S., & Lortie-Forgues, H. (2017). Hard lessons: Why rational number arithmetic is so difficult for so many people. Current Directions in Psychological Science, 26(4), 346–351. https://doi.org/10.1177/0963721417700129
Simon, M. A. (1993). Prospective Elementary Teachers’ Knowledge of Division. Journal for Research in Mathematics Education, 24(3), 233-254.
Sosa, L., Guzmán, M. V., & Ribeiro, M. (2019). Conhecimento do professor sobre dificuldades de aprendizagem no tópico adição de expressões algébricas no Ensino Médio. Educação Matemática Pesquisa, 21(3), 369-397.
Tirosh, D. (2000). Enhancing prospective teachers’ knowledge of children’s conceptions: The case of division of fractions. Journal for Research of Mathematics Education, 31(1) 5-25.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2026 TANGRAM - Revista de Educação Matemática

Este trabalho é licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Os autores devem aceitar as normas de publicação ao submeterem a revista, bem como, concordam com os seguintes termos:
(a) O Conselho Editorial se reserva ao direito de efetuar, nos originais, alterações da Língua portuguesa para se manter o padrão culto da língua, respeitando, porém, o estilo dos autores.
(b) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Atribuição-NãoComercial-CompartilhaIgual 3.0 Brasil (CC BY-NC-SA 3.0 BR) que permite: Compartilhar — copiar e redistribuir o material em qualquer suporte ou formato e Adaptar — remixar, transformar, e criar a partir do material. A CC BY-NC-SA 3.0 BR considera os termos seguintes:
- Atribuição — Você deve dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas. Você deve fazê-lo em qualquer circunstância razoável, mas de nenhuma maneira que sugira que o licenciante apoia você ou o seu uso.
- NãoComercial — Você não pode usar o material para fins comerciais.
- CompartilhaIgual — Se você remixar, transformar, ou criar a partir do material, tem de distribuir as suas contribuições sob a mesma licença que o original.
- Sem restrições adicionais — Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.

