Professores de matemática portugueses que adotam tecnologias digitais em seus atos curriculares

Autores

DOI:

https://doi.org/10.30612/tangram.v3i2.11425

Palavras-chave:

Tecnologias Digitais. Educação Matemática. Reformas curriculares em Portugal.

Resumo

O artigo tem como objetivo compreender os atos curriculares de dois professores de Matemática do Ensino Fundamental de escolas públicas do Distrito de Lisboa, em Portugal, no que se refere ao uso de tecnologias digitais baseadas em reformas recentes no país. O estudo de caso possui viés metodológico qualitativo e foram realizadas análises das falas desses professores, as quais evidenciaram a dinâmica das tecnologias digitais na abordagem da interdisciplinaridade, no âmbito da disciplina Tecnologia da Informação, por meio da Flexibilidade Curricular em matemática e não matemática. contextos matemáticos. Surgiu também a dissonância entre os atos curriculares dos professores, a Educação Matemática e as propostas curriculares em vigor no país, bem como a necessidade de ampliar estudos e pesquisas na área de Alfabetização Digital e Pensamento Computacional, para que possam ser promovidas práticas. que desenvolvem a autonomia e o processo criativo dos alunos.

Downloads

Não há dados estatísticos.

Biografia do Autor

Marcelo de Oliveira Dias, Universidade Federal Fluminense (UFF)

Possui Licenciatura Plena em Matemática pela Universidade Federal Rural do Rio de Janeiro (2005), Mestrado em Modelagem Computacional/área de Concentração Matemática Aplicada, pela Universidade do Estado do Rio de Janeiro (2008) e Doutorado em Educação Matemática pela Pontifícia Universidade Católica de São Paulo (2012). É Pós doutor em Educação, especialidade  em Didática da Matemática pelo Instituto de Educação (IE) da Universidade de Lisboa (UL)  e em Educação pela  Universidade Federal na Bahia (UFBA). Atualmente é professor Adjunto  da Universidade Federal Fluminense e Docente Permanente do Programa Stricto Sensu de Pós Graduação em Ensino (PPGEn/UFF/INFES) , atuando na Linha de Pesquisa: Práticas Pedagógicas e Formação de Professores.  É líder do Grupo de Pesquisa Currículo e Tecnologias Digitais em Educação Matemática (CTDEM)  e colaborador do Grupo de Pesquisa Tecnologia, Educação e Cognição (TEC). Tem experiência na área de Matemática, com ênfase em Educação Matemática, atuando principalmente nos seguintes temas: a Matemática na estrutura curricular, Educação Comparada, Desenvolvimento do pensamento Geométrico, Tecnologias Digitais e Formação de Professores. É sócio da Sociedade Brasileira de Educação Matemática (SBEM), da Associação Brasileira de Currículo (ABdC) e da  Associação Nacional de Pós-Graduação e Pesquisa em Educação (ANPED).

Referências

Barcelos, T. S., Muñoz, R., Villarroel, R., & Silveira, I. F. (2015). Relations between the Computational and Mathematical Thinking: A Systematic Review of the Literature. I.F. Annals of the Workshops of the IV Brazilian Congress of Education CBIE, 1369-1378.

Bauer, M., & Gaskell, G. (2002). Qualitative research with text, image and sound: a practical manual. Guareski’s Translation, p. 3 ed. Petrópolis: Vozes.

Bivar, A., Grosso, C., Oliveira, F., & Timóteo, M. C. (2013). Basic Mathematics Curriculum Program and Goals. Lisbon: Ministry of Education and Science.

Computer Science Teachers Association, & International Society for Technology in Education. CSTA & ISTE (2011). Computational Thinking: Leadership Toolkit (1st ed.). Recovered from http://www.csta.acm.org/Curriculum/sub/CurrFiles/471.11CTLeadershiptToolkit-SP-vF.pdf

General Directorate of Education (2016). Curricular Management Guidelines for the Mathematical Curriculum Program and Goals for Basic Education. Lisbon: Ministry of Education and Science.

Dick, T. P., & Hollebrans, K. F. (2011). Focus in high school mathematics: Technology to support reasoning and sense making. Reston, VA: NCTM.

Faria, R. (2007). Creating and reading Cartesian graphs that express movement: a class using a sensor and graphing calculator. Sao Paulo. (Dissertation of the Post-Graduate Program in Education, PUC-SP)

Frant, J. B. (2011). Language, Technology and embodiment: production of meanings for time in Cartesian graphics. Educate in magazine, 1, 211–226. Curitiba.

Gadanidis, G., Geiger, V. (2010). A social perspective on technology enhanced mathematical learning-from collaboration to performance. ZDM, 42(1), 91–104.

Jenkins, H.; Purusotma, R.; Weigel, M.; Clinton, K.; Robison, A. J. (2009). Confronting the challenges of participatory culture: Media education for the 21st century. Cambridge, MA: MIT Press.

Lei nº 85/2009. Basic Law of the Educational System. Diário da República, Lisbon, Portugal, 1st series, nº 166, August 27.

Macedo, R. S. (2013). Curriculum acts and pedagogical autonomy: curricular socioconstructionism in perspective. Petrópolis, RJ: Vozes.

Machado, R. M. (2012). Visualization in solving differential and integral calculus problems in the MPP computational environment. Campinas. (Doctoral Thesis in Education, UNICAMP).

Martin, A. (2006). A European Framework for Digital Literacy. Nordic Journal of Digital Literacy, 2(1), 151–161.

Mafra, J. R. S. Araújo, C.A.P.; Santos, J.P.; Meireles, J. C. (2017). Teaching of Mathematics and Educational Robotics: a proposal for technological research in Basic Education. Journal of Mathematics, Teaching and Culture. Rematec, 26(12), 100-114.

Ministry of Education and Science (2018). Essential Learning / Articulation with the Profile of the student-Mathematics. Lisbon, Portugal.

National Council of Teachers of Mathematics. NCTM. (2015). Strategic Use of Technology in Teaching and Learning Mathematics: A Position of the National Council of Teachers of Mathematics. Reston: NCTM.

Nunes, J. de A. (2011). Instructional design in mathematics education: trajectory of a mathematics teacher who develops activities on trigonometric functions with the HP 50G calculator.

Canoas. (Master's Dissertation in Education, Lutheran University of Brazil).

Organization for Economic Cooperation and Development. OECD. (2018a). OECD. Matemathics 2030 Project (Preliminary Version). Paris, France.

Organization for Economic Cooperation and Development. OECD. (2018b). The Future of Education and Skills Education 2030. Paris, France. Recovered May 20th, 2019, from https://www.oecd.org/education/2030/E2030%20Position%20Paper%20(05.04.2018).pdf.

Roschelle, J.; Shechtman, N.; Tatar, D.; Hegedus, S.; Hopkins, B.; Empson,S.; Jennifer Knudsen, J. & Gallagher, L.P. (2010). Integration of Technology, Curriculum, and Professional Development for Advancing Middle School Mathematics: Three Large-Scale Studies. American Educational Research Journal, 47(4), 833-878.

Saraiva, K. S. (2006). Other Spaces, Other Times: internet and education. (Doctoral Thesis in Education, Federal University of Rio Grande do Sul, Porto Alegre).

Sharma, S. (2013). Qualitative Approaches in Mathematics Education Research: Challenges and Possible Solutions. Education Journal, 2(2), 50–57. https://doi.org/10.11648/j.edu.20130202.14

Soares, F. G. E. P. (2010). The attitudes of basic education students towards Mathematics and the role of the teacher. Mathematics Education, 19, UFRRJ. Recovered from http://www.ufrrj.br/emanped/paginas/conteudo_producoes/docs_27/alunos.pdf

Suh, J., & Moyer, P. S. (2007). Developing students' representational fluency using virtual and physical algebra balances. Journal of Computers in Mathematics and Science Teaching, 26(2), 155-173.

Wing, J. (2006). Computational thinking. ACM, 49 (3), 33–35.

Downloads

Publicado

2020-06-30

Como Citar

Dias, M. de O. (2020). Professores de matemática portugueses que adotam tecnologias digitais em seus atos curriculares. TANGRAM - Revista De Educação Matemática, 3(2), 51–70. https://doi.org/10.30612/tangram.v3i2.11425

Edição

Seção

Artigos