Application of Benford's law in monthly series of precipitation

Authors

DOI:

https://doi.org/10.55761/abclima.v37i21.19740

Keywords:

Data quality control, Gap filling, Goodness of fit test, Logarithmic distribution

Abstract

Benford's Law describes a logarithmic distribution of leading digits in real-world data, with smaller digits occurring more frequently than larger ones. Accordingly, this study investigated the application of this law to monthly precipitation series recorded at nine automatic weather stations in the state of Espírito Santo, Brazil, from 2006 to 2023. The objective was to assess the conformity of the data with the theoretical distribution predicted by Benford's Law, both in the original data and after filling gaps in the series. Two gap-filling methods were used: the average of the same months from other years with data and linear interpolation. Adherence to Benford's Law was verified using the Chi-square test, comparing the observed distribution of the first and second digits with the expected theoretical pattern. The results indicated that the original precipitation series adheres to Benford's Law, suggesting the reliability of the records. Gap-filling with the average altered the digit distribution, particularly for the second digit, compromising this conformity. In contrast, linear interpolation preserved the numerical pattern and adherence to the law. It is concluded, therefore, that Benford's Law has the potential to assess the quality of precipitation series, and linear interpolation is recommended for treating missing data when it is necessary to preserve the initial natural distribution of the data.

Downloads

Download data is not yet available.

Author Biographies

Iulo Pessotti Moro, Universidade Federal do Espírito Santo

Engenheiro Florestal pela Universidade Federal do Espírito Santo (2019) e mestre em Gestão Pública, área de concentração Administração Pública, pela Universidade Federal do Espírito Santo (2021), doutorando em Ciências Florestais, na área de manejo de bacias hidrográficas e modelagem, pela Universidade Federal do Espírito Santo, 

Sidney Sara Zanetti, Universidade Federal do Espírito Santo

Eng Agrônomo pela Universidade Federal do Espírito Santo - UFES (2000), Mestre (M. Sc.) em Engenharia Agrícola pela Universidade Federal de Viçosa - UFV (2003), e Doutor (D. Sc.) em Produção Vegetal pela Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF (2007). De 2006 a 2009, atuou no Instituto de Defesa Agropecuária e Florestal do Espírito Santo (IDAF) como Analista Ambiental. De 2009 a 2010, foi Professor Adjunto da UFES, no Centro Universitário Norte do Espírito Santo, na área de geotecnologias. Atualmente, Professor Associado da UFES, no Centro de Ciências Agrárias e Engenharias / Departamento de Ciências Florestais e da Madeira. Principais áreas de atuação: hidrologia; agrometeorologia; recursos hídricos; modelagem hidrológica; métodos estatísticos quantitativos; e geotecnologias aplicadas.

Roberto Avelino Cecílio, Universidade Federal do Espírito Santo

Possui graduação em Engenharia Agrícola pela Universidade Federal de Viçosa (1999), mestrado em Engenharia Agrícola pela Universidade Federal de Viçosa (2002) e doutorado em Engenharia Agrícola pela Universidade Federal de Viçosa (2005). Atualmente é Professor Titular da Universidade Federal do Espírito Santo. Tem experiência na área de Engenharia Agrícola, com ênfase em Recursos Hídricos, atuando principalmente nos seguintes temas: modelagem hidrológica, manejo de bacias hidrográficas, agrometeorologia e geoprocessamento aplicado ao planejamento e manejo de recursos hídricos

References

ALEXANDERSSON, H. A homogeneity test applied to precipitation data. Journal of Climatology, v. 6, n. 6, p. 661–675, 10 jan. 1986. DOI: https://doi.org/10.1002/joc.3370060607

BENFORD, F. The Law of Anomalous Numbers. Proceedings of the American Philosophical Society, v. 78, n. 4, p. 551–572, 1938.

BUISHAND, T. A. Some methods for testing the homogeneity of rainfall records. Journal of Hydrology, v. 58, n. 1–2, p. 11–27, ago. 1982. DOI: https://doi.org/10.1016/0022-1694(82)90066-X

COSTA NETO, P. L. DE O. Estatística. 3. ed. São Paulo, SP: Blucher, 2002.

CUMBRERA-CONDE, I.; SILVA-RAMÍREZ, E.-L.; CUMBRERA, F. L. Signal processing analysis for detection of anomalies in numerical series. Expert Systems with Applications, v. 255, p. 124708, 1 dez. 2024. DOI: https://doi.org/10.1016/j.eswa.2024.124708

DURTSCHI, C.; HILLISON, W.; PACINI, C. The Effective Use of Benford’s Law to Assist in Detecting Fraud in Accounting Data. Journal of Forensic Accounting, v. 5, n. 1, p. 17–34, 2004.

LEE, J.; CARVALHO, M. DE. Technological improvements or climate change? Bayesian modeling of time-varying conformance to Benford’s Law. PLOS ONE, v. 14, n. 4, p. e0213300, 12 abr. 2019. DOI: https://doi.org/10.1371/journal.pone.0213300

LI, Q.; FU, Z. Quantifying non-stationarity effects on organization of atmospheric turbulent eddy motion by Benford’s law. Communications in Nonlinear Science and Numerical Simulation, v. 33, p. 91–98, 1 abr. 2016. DOI: https://doi.org/10.1016/j.cnsns.2015.09.006

MARZIO, M. DI; FENSORE, S.; PASSAMONTI, C. Validating Benfordness on contaminated data. Socio-Economic Planning Sciences, v. 95, p. 102008, 1 out. 2024. DOI: https://doi.org/10.1016/j.seps.2024.102008

MCKINNEY, W. Python para análise de dados: tratamento de dados com pandas, NumPy e Jupyter. 3. ed. São Paulo, SP: Novatec Editora Ltda, 2023.

MORO, I. P.; CECÍLIO, R. A.; ZANETTI, S. S.; XAVIER, A. C.; PEZZOPANE, J. E. M. Tendências em séries temporais meteorológicas e seus impactos na evapotranspiração de referência diária. Revista Brasileira de Climatologia, v. 36, p. 202–224, 4 fev. 2025. DOI: https://doi.org/10.55761/abclima.v36i21.19077

NEWCOMB, S. Note on the Frequency of Use of the Different Digits in Natural Numbers. American Journal of Mathematics, v. 4, n. 1/4, p. 39, 1881. DOI: https://doi.org/10.2307/2369148

NIGRINI, M. J. Benford’s law: applications for forensic accouting, auditing, and fraud detection. Hoboken: John Wiley & Sons, Inc., 2012. DOI: https://doi.org/10.1002/9781119203094

NIGRINI, M. J.; MILLER, S. J. Benford’s Law Applied to Hydrology Data—Results and Relevance to Other Geophysical Data. Mathematical Geology, v. 39, n. 5, p. 469–490, 12 set. 2007. DOI: https://doi.org/10.1007/s11004-007-9109-5

NOLETO-FILHO, E. M.; CARVALHO, A. R.; THOMÉ-SOUZA, M. J. F.; ANGELINI, R. Reporting the accuracy of small-scale fishing data by simply applying Benford’s law. Frontiers in Marine Science, v. 9, 2 set. 2022. DOI: https://doi.org/10.3389/fmars.2022.947503

OLIVEIRA, J. A. J. DE; MILANI FILHO, M. A. F.; FRANCISCHETTI, C. E.; OLIVEIRA JR, S. V. DE; PADOVEZE, C. L. Uma análise nos gastos da união: aplicabilidade da lei de Newcomb-Benford. CONTABILOMETRIA - Brazilian Journal of Quantitative Methods Applied to Accounting, v. 5, n. 2, p. 123–141, 2018.

PAIN, J.-C.; CROSET, P. Checking the reliability of opacity databases. The European Physical Journal D, v. 77, n. 4, p. 60, 13 abr. 2023. DOI: https://doi.org/10.1140/epjd/s10053-023-00642-4

PETTITT, A. N. A Non-Parametric Approach to the Change-Point Problem. Applied Statistics, v. 28, n. 2, p. 126, 1979. DOI: https://doi.org/10.2307/2346729

SAMBRIDGE, M.; TKALČIĆ, H.; JACKSON, A. Benford’s law in the natural sciences. Geophysical Research Letters, v. 37, n. 22, 17 nov. 2010. DOI: https://doi.org/10.1029/2010GL044830

SILVA, W. B. DA; TRAVASSOS, S. K. DE M.; COSTA, J. I. DE F. Using the Newcomb-Benford Law as a Deviation Identification Method in Continuous Auditing Environments: A Proposal for Detecting Deviations over Time. Revista Contabilidade & Finanças, v. 28, n. 73, p. 11–26, 1 abr. 2017. DOI: https://doi.org/10.1590/1808-057x201702690

WMO - WORLD METEOROLOGICAL ORGANIZATION. Guidelines on Homogenization (WMO-No. 1245). Geneva: WMO, 2020.

WMO - WORLD METEOROLOGICAL ORGANIZATION. Guidelines on Surface Station Data Quality Control and Quality Assurance for Climate Applications (WMO-No. 1269). Geneva: WMO, 2021.

WMO - WORLD METEOROLOGICAL ORGANIZATION. Guide to Climatological Practices (WMO-No. 100). Geneva: WMO, 2023.

YANG, L.; FU, Z. Out-phased decadal precipitation regime shift in China and the United States. Theoretical and Applied Climatology, v. 130, n. 1–2, p. 535–544, 24 out. 2017. DOI: https://doi.org/10.1007/s00704-016-1907-6

Published

17/10/2025

How to Cite

Moro, I. P., Zanetti, S. S., & Cecílio, R. A. (2025). Application of Benford’s law in monthly series of precipitation. Brazilian Journal of Climatology, 37(21), 431–453. https://doi.org/10.55761/abclima.v37i21.19740

Issue

Section

Artigos