Evaluation of moisture in sugarcane straw bales piles in the field using geoestatistical techniques
DOI:
https://doi.org/10.55761/abclima.v37i21.19003Keywords:
Biomass. Density. Spatial dependence. Storage.Abstract
Sugarcane is planted in 23 Brazilian states totaling more than 10.2 million hectares, and for each hectare there are around 10 tons of straw (db), biomass resulting from mechanized harvesting. In Brazil, the straw is of relevance to the sector by the volume produced and can be used for the production of steam, electricity, second-generation ethanol, and paper, and the bale is the most used form in field harvesting. Due to the sugarcane harvesting, it is necessary to store the bales produced in large piles for up to one year. The best way to store bales of straw is still unknown, which leads to biomass losses, higher costs, and reduced profits. In order to provide more efficient techniques for the storage of straw, we evaluated the distribution of moisture inside the piles stored in the field, without coverage, in two baling densities, three accumulated amounts of precipitation, and the picking or not of the straw before the baling. Over all, nine piles were assembled, and 294 moisture points per pile were sampled. The analysis and data processing consisted in verifying the existence of spatial dependence, and existing, the data interpolation was carried out by the ordinary kriging method by prediction, to estimate values at unmeasured locations and to create the moisture distribution maps in the stacks. In all the evaluated treatments the existence of spatial dependence was observed, being possible the use of geostatistical methods for analysis. The spherical model was the most appropriate to describe the behavior of moisture inside the cells. The chopping of straw affected the distribution of moisture, as well as the density and amount of precipitation accumulated. For short periods of storage, bales of chopped straw remained drier, while for longer periods, bales of chopped straw remained drier. High-density bales were more efficient in maintaining the driest biomass.
Downloads
References
BARTZANAS, T.; BOCHTIS, D. D.; SORENSEN, C. G.; SAPOUNAS, A. A.; GREEN, O. A numerical modelling approach for biomass field drying. Biosystems Engineering, v. 106, p. 458-469, 2010. DOI: https://doi.org/10.1016/j.biosystemseng.2010.05.010
BORREANI, G.; TABACCO, E. Effects of crop properties, weather conditions and mechanical treatments on the wilting rate of diploid and tetraploid Italian rye grass for silage. Grass Forage Science, v. 53, p. 179-188, 1998. DOI: https://doi.org/10.1046/j.1365-2494.1998.5320179.x
CAMBARDELLA, C. A.; MOORMAN, T. B.; NOVAK, J. M.; PARKIN, T. B.; KARLEN, D. L.; TURCO, R. F.; KONOPKA, A. E. Field-scale variability of soil properties in Central Iowa Soils. Soil Science Society of America Journal, v. 58, p. 1501-1511, 1994. DOI: https://doi.org/10.2136/sssaj1994.03615995005800050033x
CARFRAE, Jim. The moisture performance of straw bale construction in a temperate maritime climate. 2011. 276 f. Tese (Doutorado) – University of Plymouth, School of Architecture, Design and Environmental, 2011.
JIRIJS, R. Effects of particle size and pile height on storage and fuel quality of comminuted Salix viminalis. Biomass and Bioenergy, v. 28, p. 193-201, 2005. DOI: https://doi.org/10.1016/j.biombioe.2004.08.014
KANZIAN, C.; HOLZLEITNER, F.; STAMPFER, K.; ASHTON, S. Regional energy wood logistics – optimizing local fuel supply. Silva Fennica, v. 43, p. 113-128, 2009. DOI: https://doi.org/10.14214/sf.464
KHANCHI, A.; JONES, C. L.; SHARMA, B.; HUHNKE, R. L.; WECKLER, P.; MANESS, N. O. An empirical model to predict infield thin layer drying rate of cut switchgrass. Biomass and Bioenergy, v. 58, p. 128-135, 2013. DOI: https://doi.org/10.1016/j.biombioe.2013.08.024
KRZYZANIAK, M.; STOLARSKI, M. J.; NIKSA, D.; TWORKOWSKI, J.; SZCZUKOWSKI, S. Effect of storage methods on willow chips quality. Biomass and Bioenergy, v. 92, p. 61-69, 2016. DOI: https://doi.org/10.1016/j.biombioe.2016.06.007
LAMPARELLI, R. A. C.; ROCHA, J. V.; BHORGUI, E. Geoprocessamento e agricultura de precisão: fundamentos e aplicações. Guaíba: Agropecuária, 2001. v. 1, 118 p.
LAWRENCE, M.; HEATH, A.; WALKER, P. Determining moisture levels in straw bale construction. Construction and Building Materials, v. 23, n. 8, p. 2763-2768, 2009. DOI: https://doi.org/10.1016/j.conbuildmat.2009.03.011
LEBLICQ, S.; VAMAERCKE, S.; RAMON, H.; SAEYS, W. Mechanical analysis of the bending behavior of plant stems. Biosystems Engineering, v. 129, p. 87-99, 2015. DOI: https://doi.org/10.1016/j.biosystemseng.2014.09.016
MANZONE, M. Efficiency of a compactor in wood chips volume reduction. Biomass and Bioenergy, v. 80, p. 303-306, 2015. DOI: https://doi.org/10.1016/j.biombioe.2015.06.007
MANZONE, M. Storage of woodchips in pressed bales. Fuel Processing Technology, v. 157, p. 59-64, 2017. DOI: https://doi.org/10.1016/j.fuproc.2016.11.010
MANZONE, M.; BALSARI, P. Poplar woodchip storage in small and medium piles with different forms, densities and volumes. Biomass and Bioenergy, v. 87, p. 162–168, 2016. DOI: https://doi.org/10.1016/j.biombioe.2016.02.026
MANZONE, M.; BALSARI, P.; SPINELLI, R. Small-scale storage techniques for fuel chips from short rotation forestry. Fuel, v. 109, p. 687-692, 2013. DOI: https://doi.org/10.1016/j.fuel.2013.03.006
MEDEIROS, A. M. L. Artigos sobre conceitos em geoprocessamento. E-book, 2012. Disponível em: <http://197.249.65.74:8080/biblioteca/bitstream/123456789/563/1/E-book-Artigos-sobre-Conceitos-em-Geoprocessamento-Anderson-Medeiros.pdf>. Acesso em: 26 mai. 2017.
OLIVARES, E. G.; CORTEZ, L. A. B.; ROCA, G. A. A.; BROSSARD, L. E. Resumos do 7º Congresso Internacional Sobre Geração Distribuída e Energia no Meio Rural – Semiárido, Energia e Desenvolvimento Sustentável – Agrener, Anais, Brasil, 2008.
PAZ, A.; TABOADA, M. T.; GÓMEZ, M. J. Spatial variability in topsoil micronutrients contents in one-hectare cropland plot. Communication in Soil Science and Plant Analysis, v. 27, n. 3/4, p. 479-503, 1996. DOI: https://doi.org/10.1080/00103629609369570
ROBINSON, Julian. Quantifying and evaluating risk posed to straw bale constructions from moisture. 2014. 335 f. Tese (Doutorado) – Nottingham Trent University, School of Architecture, Design and the Build Environment, 2014.
ROBINSON, J.; AOUN, H. K.; DAVISON, M. Determining moisture levels in straw bale construction. Procedia Engineering, v. 171, p. 1526-1534, 2017. DOI: https://doi.org/10.1016/j.proeng.2017.01.390
SALVIANO, Adeodato Ari Cavalcante. Variabilidade de atributos de solo e de Crotalaria juncea em solo degradado do município de Piracicaba-SP. 1996. 91 f. Tese (Doutorado) – Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, 1996.
SHINNERS, K. J.; BINVERSIE, B. N.; MUCK, R. E.; WEIMER, P. J. Comparison of wet and dry corn stover harvest and storage. Biomass and Bioenergy, v. 31, p. 211-221, 2007. DOI: https://doi.org/10.1016/j.biombioe.2006.04.007
SMITH, E. A. A review on field drying of grass. Drying Technology, v. 8, p. 465-498, 1990. DOI: https://doi.org/10.1080/07373939008959896
STRAUBE, J. BSD-112: Building Science for straw-bale buildings. Building Science Digest, 2009. Disponível em: <http://www.buildingscience.com/documents/digests/bsd-112-building-science-for-strawbale-buildings>. Acesso em: 28 mar. 2018.
STRAUBE, J.; SCHUMACHER, C. Monitoring the hygrothermal performance of straw bale walls. Balanced Solutions, 2003. Disponível em: <http://www.ecobuildnetwork.org./imagens/Straw_Bale_Test_Downloads/monitoring_the_hygrothermal_performance_of_strawbale_walls_straube_Schumacher_2003.pdf>. Acesso em: 28 mar. 2018.
TRANGMAR, B. B.; YOST, R. S.; WADE, M. K.; UEHARA, G.; SUDJADI, M. Spatial variation of soil properties and rice yield on recently cleared land. Soil Science Society of America Journal, v. 51, p. 668-674, 1987. DOI: https://doi.org/10.2136/sssaj1987.03615995005100030021x
VIEIRA, S. R. Geoestatística em estudos de variabilidade espacial do solo. In: NOVAIS, R. F. de; ALVAREZ V., V. H.; SCHAEFER, C. E. G. R. (Ed.). Tópicos em ciência do solo. Viçosa: Sociedade Brasileira de Ciência do Solo, 2000. v. 1, p. 1-54.
YAMAMOTO, J. K.; LANDIM, P. M. B. Geoestatística: conceitos e aplicações. 1. ed. São Paulo: Oficina de Textos, 2015. 215 p.
ZIMBACK, Célia Regina Lopes. Análise espacial de atributos químicos de solos para fins de mapeamento da fertilidade. 2001. 114 f. Tese (Livre-Docência) – Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu, 2001.
Downloads
Published
How to Cite
Issue
Section
License
A aprovação dos artigos implica a aceitação imediata e sem ônus de que a Revista Brasileira de Climatologia terá exclusividade na primeira publicação do artigo. Os autores continuarão, não obstante, a deter os direitos autorais. Os autores autorizam também que seus artigos sejam disponibilizados em todos os indexadores aos quais a revista está vinculada.
Os autores mantém seus direitos de publicação sem restrições
A Comissão Editorial não se responsabiliza pelos conceitos ou afirmações expressos nos trabalhos publicados, que são de inteira responsabilidade dos autores.
A Revista Brasileira de Climatologia oferece acesso livre imediato ao seu conteúdo, seguindo o entendimento de que disponibilizar gratuitamente o conhecimento científico ao público proporciona maior democratização do conhecimento e tende a produzir maior impacto dos artigos publicados. Os artigos publicados na revista são disponibilizados segundo a Licença Creative Commons CC-BY-NC 4.0 (https://creativecommons.org/licenses/by-nc/4.0/). Segundo essa licença é permitido acessar, distribuir e reutilizar os artigos para fins não comerciais desde que citados os autores e a fonte. Ao submeter artigos à Revista Brasileira de Climatologia, os autores concordam em tornar seus textos legalmente disponíveis segundo essa licença

