Impacto do desmatamento na temperatura de superfície terrestre e vegetação na Reserva Biológica do Jaru – RO

Autores

DOI:

https://doi.org/10.55761/abclima.v37i21.18744

Palavras-chave:

Temperatura da Superfície Terrestre (TST). Índice de Vegetação por Diferença Normalizada (NDVI). Mudança no uso e cobertura do solo.

Resumo

A Reserva Biológica do Jaru tem enfrentado ameaças à estabilidade ambiental, especialmente nas margens limítrofes. Este estudo objetivou avaliar a relação entre a Temperatura da Superfície Terrestre (TST) e o Índice de Vegetação por Diferença Normalizada (NDVI), utilizando imagens dos satélites Landsat 5 e 8, para o período de 1992 a 2023. Os resultados indicaram uma perda de 11,77% da vegetação nativa e aumento de até 13 °C na TST, com correlação negativa progressiva entre TST e NDVI (-0,9004 em 2023). Áreas com vegetação densa apresentaram temperaturas mais baixas, enquanto regiões alteradas sofreram aquecimento significativo, refletindo os impactos das mudanças no uso do solo. Esses resultados reforçam a relevância do monitoramento da TST e destacam a urgência de implementar estratégias eficazes de gestão para mitigar as pressões antrópicas nas unidades de conservação.

 

Downloads

Não há dados estatísticos.

Biografia do Autor

Jaina Rodrigues Evangelista, Departamento de Geografia, Universidade Federal de Rondônia (UNIR)

Graduada em Ciência Biológicas - Bacharel/Licenciatura no Centro Universitário São Lucas e Mestranda em Geografia na Universidade Federal de Rondônia - UNIR. Atualmente pesquisadora na Coordenadoria de Recursos Hidrícos SEDAM/RO. Membro do Grupo de Pesquisa de Bioclimatologia e Mudanças Climáticas da Amazônia - BIOCLAM. Com experiência na área de Sensoriamento Remoto com ênfase em Temperatura da Superfície Terrestre,  Indíce de Vegetação por Diferença Normalizada e Power Bi. 

Sara Regiane Tavares Lopes, Departamento de Geografia, Universidade Federal de Rondônia (UNIR)

Graduanda em Geografia - Licenciatura pela Universidade Federal de Rondônia - UNIR. Atualmente técnica na Coordenadoria de Geociências SEDAM/RO. Membro do Grupo de Pesquisa de Bioclimatologia e Mudanças Climáticas da Amazônia - BIOCLAM. Com experiência na área de Sensoriamento Remoto com ênfase em Temperatura da Superfície Terrestre e Indíce de Vegetação por Diferença Normalizada.

Lucas Matheus Matos Pacheco Ziles, Engenharia Elétrica, São Lucas/AFYA

Engenheiro eletricista e técnico em informática com ampla experiência em manutenção de hardware e configuração de redes de internet e telefonia. Possuo habilidades avançadas no manuseio de ferramentas como o MS Office, Power BI, QGIS, R Studio, Python, AutoCAD, além de facilidade de aprender a utilizar qualquer software.

Graziela Tosini Tejas, Departamento de Engenharia Civil, Instituto Federal de Educação, Ciência e Tecnologia de Rondônia (IFRO)

Possui graduação em Geografia, mestrado em Geografia e doutorado em Desenvolvimento Regional e Meio Ambiente pela Universidade Federal de Rondônia, especialista em Gestão Ambiental pelo Centro Universitário São Lucas e Georreferenciamento de Imóveis Rurais pela FARO. Atualmente é professora do Instituto Federal de Educação Ciência e Tecnologia de Rondônia, campus Porto Velho Calama. É pesquisadora do grupo de pesquisa BIOCLAM/UNIR e GESSTEC/IFRO. Atualmente é secretária geral da Associação Brasileira de Climatologia - ABClima. Tem experiência na área de Geografia, com ênfase em Geografia Física, atuando principalmente nos seguintes temas: sensoriamento remoto, clima urbano, ilhas de calor, qualidade ambiental e cobertura arbórea urbana.

João Paulo Assis Gobo, Departamento de Geografia, Universidade Federal de Rondônia (UNIR)

Bacharel em Geografia pela Universidade Federal de Santa Maria (UFSM) (2010). Mestre em Geografia Física pela Universidade de São Paulo (USP) (2013). Doutor em Geografia Física pela Universidade de São Paulo (USP) (2017). Pós-Doutor em Ciências pela Universidade de São Paulo (USP). Foi professor convidado da Pontifícia Universidade Católica de São Paulo (PUC-SP). Atualmente é Professor Adjunto do Departamento de Geografia da Universidade Federal de Rondônia, Professor Permanente do Programa de Pós-Graduação em Geografia da mesma instituição. É líder do Grupo de Pesquisas em Bioclimatologia e Mudanças Climáticas na Amazônia - BIOCLAM, da Universidade Federal de Rondônia e participa como pesquisador do grupo de pesquisa do Laboratório de Climatologia Ambiental e Subtropical-LaCAS da Universidade Federal de Santa Maria (UFSM), do Núcleo de Apoio à Pesquisa em Mudanças Climáticas (INCLINE - INterdisciplinary CLimate INvestigation cEnter) e do Grupo de Pesquisa em Geografia e Planejamento Ambiental - GEOPLAM da UNIR. É editor assistente da revista Presença Geográfica e editor associado da revista Weather, Climate, and Society. É membro do Comitê Técnico-científico para implantação do Plano Municipal de Mudanças Climáticas do Município de Porto Velho-RO e secretário da Associação Brasileira de Climatologia (ABClima). Desde fevereiro de 2023 é Bolsista de Produtividade em Pesquisa do CNPq - Nível 2. Tem experiência na área de Climatologia Geográfica atuando principalmente nos seguintes temas: Biometeorologia Humana; Conforto Térmico; Clima e Saúde; Clima Urbano e Poluição Atmosférica.

Referências

ANDERSON, D. R.; SWEENEY, D. J.; WILLIAMS, T. A. Estatística aplicada à administração e economia. 2. ed. São Paulo: Thomson, 2007. p. 127–128.

ANDRONIS, V. et al. Time-series analysis of Landsat data to investigate the relationship between land surface temperature and forest changes in Pafos Forest, Cyprus. Remote Sensing, Basel, v. 14, n. 4, art. 1010, 2022. DOI: https://doi.org/10.3390/rs14041010. Disponível em: https://www.mdpi.com/2072-4292/14/4/1010. Acesso em: 14 fev. 2024. DOI: https://doi.org/10.3390/rs14041010

AYANLADE, A.; AIGBIREMOLEN, M. I.; OLADOSU, O. R. Variations in urban land surface temperature intensity over four cities in different ecological zones. Scientific Reports, Londres, v. 11, p. 20537, 2021. DOI: https://doi.org/10.1038/s41598-021-99693-z. Disponível em: https://www.nature.com/articles/s41598-021-99693-z. Acesso em: 11 fev. 2024. DOI: https://doi.org/10.1038/s41598-021-99693-z

BEIROZ, H. Zonas de amortecimento de Unidades de Conservação em ambientes urbanos sob a ótica territorial: reflexões, demandas e desafios. Desenvolvimento e Meio Ambiente, Curitiba, v. 35, p. 275–286, dez. 2015. DOI: https://doi.org/10.5380/dma.v35i0.38253. Disponível em: https://revistas.ufpr.br/made/article/download/38253/27100. Acesso em: 21 fev. 2024. DOI: https://doi.org/10.5380/dma.v35i0.38253

BERNALES, A. M. et al. Modelling the relationship between land surface temperature and landscape patterns of land use land cover classification using multi linear regression models. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, Hannover, v. XLI B8, p. 851–857, 2016. DOI: https://doi.org/10.5194/isprsarchives-XLI-B8-851-2016. Disponível em: https://isprs-archives.copernicus.org/articles/XLI-B8/851/2016/isprs-archives-XLI-B8-851-2016.pdf. Acesso em: 13 jun. 2025. DOI: https://doi.org/10.5194/isprsarchives-XLI-B8-851-2016

BRASIL. AGÊNCIA NACIONAL DE ÁGUAS E SANEAMENTO BÁSICO. Sistema Hidrotelemetria: Estação Fluviométrica Ji-Paraná (Código 15560000). [S.l.]: ANA, [s.d.]. Disponível em: https://www.snirh.gov.br/hidrotelemetria. Acesso em: 17 dez. 2023.

BRASIL. Lei n° 9.985, de 18 de julho de 2000. Dispõe sobre o Sistema Nacional de Unidades de Conservação da Natureza. Diário Oficial da União: seção 1, Brasília, DF, 19 jul. 2000. Disponível em: https://www.planalto.gov.br/ccivil_03/leis/l9985.htm. Acesso em: 11 jan. 2025.

CARLSON, T. N.; RIPLEY, D. A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, Amsterdã, v. 62, n. 3, p. 241–252, 1997. DOI: https://doi.org/10.1016/S0034-4257(97)00104-1. Disponível em: https://www.sciencedirect .com/science/article/pii/S0034425797001041. Acesso em: 12 fev. 2024. DOI: https://doi.org/10.1016/S0034-4257(97)00104-1

CHANDER, G.; MARKHAM, B. L.; HELDER, D. L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, Amsterdã, v. 113, n. 5, p. 893–903, 2009. DOI: https://doi.org/10.1016/j.rse.2009.01.007. Disponível em: https://www.sciencedirect.com/ science/article/abs/pii/S0034425709000169?via%3Dihub. Acesso em: 12 fev. 2024. DOI: https://doi.org/10.1016/j.rse.2009.01.007

CHANG, C.-R.; LI, M.-H. Effects of urban parks on the local urban thermal environment. Urban Forestry & Urban Greening, Jena, v. 13, n. 4, p. 672–681, 2014. DOI: https://doi.org/10.1016/j.ufug.2014.08.001. Disponível em: https://www.science direct.com/science/article/abs/pii/S1618866714000922?via%3Dihub. Acesso em: 13 fev. 2024. DOI: https://doi.org/10.1016/j.ufug.2014.08.001

DE WINTER, J. C. F.; GOSLING, S. D.; POTTER, J. P. Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: a tutorial using simulations and empirical data. Psychological Methods, Washington, v. 21, n. 3, p. 273–290, 2016. DOI: https://doi.org/10.1037/met0000079. Disponível em: https://doi.org/10.1037/met0000079. Acesso em: 13 fev. 2024. DOI: https://doi.org/10.1037/met0000079

DEFRIES, R. S.; ROSENZWEIG, C. Toward a whole-landscape approach for sustainable land use in the tropics. Proceedings of the National Academy of Sciences of the United States of America, Washington, v. 107, n. 46, p. 19627–19632, 2010. DOI: https://doi.org/10.1073/pnas.1011163107. Disponível em: https://www.pnas.org/doi/pdf /10.1073/pnas.1011163107. Acesso em: 13 fev. 2024. DOI: https://doi.org/10.1073/pnas.1011163107

DENG, Y. et al. Relationship among land surface temperature and LUCC, NDVI in typical karst area. Scientific Reports, Londres, v. 8, art. 641, 2018. DOI: https://doi.org/10.1038/s41598-017-19088-x. Disponível em: https://www.nature.com/articles/s41598-017-19088-x. Acesso em: 11 fev. 2024. DOI: https://doi.org/10.1038/s41598-017-19088-x

DOUGHTY, C. E. et al. Tropical forest leaves may darken in response to climate change. Nature Ecology & Evolution, Londres, v. 2, n. 12, p. 1918–1924, 2018. DOI: https://doi.org/10.1038/s41559-018-0716-y. Disponível em: https://www.nature.com /articles/s41559-018-0716-y. Acesso em: 11 fev. 2024. DOI: https://doi.org/10.1038/s41559-018-0716-y

FEARNSIDE, P. M. Os efeitos das pastagens sobre a fertilidade do solo na Amazônia Brasileira: consequências para a sustentabilidade de produção bovina. Acta Amazônica, Manaus, v. 10, n. 1, p. 119–132, mar. 1980. DOI: https://doi.org/10.1590/1809-43921980101119. Disponível em: https://www.scielo.br/j/aa/a/YWPYXhYpvXzhppqfmV FYZRh/pdf/. Acesso em: 11 fev. 2024. DOI: https://doi.org/10.1590/1809-43921980101119

GALLO, K.; KRISHNAN, P. Evaluation of the bias in the use of clear sky compared with all sky observations of monthly and annual daytime land surface temperature. Journal of Applied Meteorology and Climatology, Boston, v. 61, n. 10, p. 1485–1495, 2022. DOI: https://doi.org/10.1175/JAMC-D-21-0240.1. Disponível em: https://journals.ametsoc.org/ view/journals/apme/61/10/JAMC-D-21-0240.1.xml. Acesso em: 12 fev. 2024. DOI: https://doi.org/10.1175/JAMC-D-21-0240.1

GOMES, J. et al. Conversão de florestas tropicais em sistemas pecuários na amazônia: quais as implicações no microclima da região? Revista Brasileira de Climatologia, Curitiba, v. 17, p. 67–81, 2015. DOI: https://doi.org/10.5380/abclima.v17i0.42879. Disponível em: https://revistas.ufpr.br/revistaabclima/article/view/42879. Acesso em: 12 fev. 2024. DOI: https://doi.org/10.5380/abclima.v17i0.42879

GUHA, S.; GOVIL, H. Annual assessment on the relationship between land surface temperature and six remote sensing indices using Landsat data from 1988 to 2019. Geocarto International, Abingdon, England, v. 37, n. 15, p. 4292–4311, 2022. DOI: https://doi.org/10.1080/10106049.2021.1886339. Disponível em: https://www.tandf online.com/doi/full/10.1080/10106049.2021.1886339. Acesso em: 14 fev. 2024. DOI: https://doi.org/10.1080/10106049.2021.1886339

GUHA, S.; GOVIL, H. Temperatura da superfície terrestre e relação do índice de vegetação por diferença normalizada: um estudo sazonal em uma cidade tropical. SN Applied Sciences, Cham, v. 2, art. 1661, 2020. DOI: https://doi.org/10.1007/s42452-020-03458-8. Disponível em: https://link.springer.com/article/10.1007/s42452-020-03458-8. Acesso em: 21 mar. 2024.

GUO, J. et al. Evaluation of land surface temperature retrieval from Landsat 8/TIRS images before and after stray light correction using the SURFRAD dataset. Remote Sensing, Basel, v. 12, n. 6, art. 1023, 2020. DOI: https://doi.org/10.3390/rs12061023. Disponível em: https://www.mdpi.com/2072-4292/12/6/1023. Acesso em: 16 fev. 2024. DOI: https://doi.org/10.3390/rs12061023

JIMENEZ GALO, A. J. Monitoring of tropical forest cover with remote sensing. In: PANCEL, L.; KÖHL, M. (org.). Tropical Forestry Handbook. Berlin: Springer, 2016. DOI: https://doi.org/10.1007/978-3-642-41554-8_145-2. Disponível em: https://link.springer.com /referenceworkentry/10.1007/978-3-642-41554-8_145-2. Acesso em: 15 fev. 2024.

KAPOS, V. Effects of isolation on the water status of forest patches in the Brazilian Amazon. Journal of Tropical Ecology, Cambridge, v. 5, n. 2, p. 173–185, 1989. DOI: https://doi.org/10.1017/S0266467400003448. Disponível em: https://www.cambridge.org /core/journals/journal-of-tropical-ecology/article/abs/effects-of-isolation-on-the-water-stat us-of-forest-patches-in-the-brazilian-amazon/C823177158512F09A4FE56FE3576700A. Acesso em: 11 fev. 2024. DOI: https://doi.org/10.1017/S0266467400003448

KHANNA, J. et al. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nature Climate Change, Londres, v. 7, p. 200–204, 2017. DOI: https://doi.org/10.1038/nclimate3226. Disponível em: https://www.nature.com/articles /nclimate3226. Acesso em: 11 fev. 2024. DOI: https://doi.org/10.1038/nclimate3226

JUSTINA, E. E. D. Zoneamento geoambiental da Reserva Biológica do Jaru e zona de amortecimento – RO, como subsídio ao seu plano de manejo. 2009. 225 f. Tese (Doutorado em Geociências e Ciências Exatas) – Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas, Rio Claro, 2009. Disponível em: https://repositorio.unesp.br/ handle/11449/102891. Acesso em: 13 fev. 2024.

LEAL, L. A influência da vegetação no clima urbano da cidade de Curitiba – PR. 2012. Tese (Doutorado em Engenharia Florestal) – Universidade Federal do Paraná, Curitiba, 2012. 172 p. Disponível em: https://acervodigital.ufpr.br/xmlui/bitstream/handle/1884/28276/R%20-%20T%20-%20LUCIANA%20LEAL.pdf?isAllowed=y&sequence=1. Acesso em: 12 fev. 2024.

LEITE-FILHO, A. T.; SOARES-FILHO, B. S.; DAVIS, J. L. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nature Communications, Londres, v. 12, art. 2591, 2021. DOI: https://doi.org/10.1038/s41467-021-22840-7. Disponível em: https://www.nature.com/articles/s41467-021-22840-7. Acesso em: 14 fev. 2024. DOI: https://doi.org/10.1038/s41467-021-22840-7

LIAN, X. et al. Biophysical impacts of northern vegetation changes on seasonal warming patterns. Nature Communications, Londres, v. 13, art. 3925, 2022. DOI: https://doi.org/10.1038/s41467-022-31671-z. Disponível em: https://www.nature.com/ articles/s41467-022-31671-z. Acesso em: 21 mar. 2024.

LIN, W. et al. Calculating cooling extents of green parks using remote sensing: Method and test. Landscape and Urban Planning, Amsterdã, v. 134, p. 66–75, fev. 2015. DOI: https://doi.org/10.1016/j.landurbplan.2014.10.012. Disponível em: https://www.science direct.com/science/article/pii/S0169204614002448. Acesso em: 10 fev. 2024. DOI: https://doi.org/10.1016/j.landurbplan.2014.10.012

MENESES, P. R.; DE ALMEIDA, T.; DE MELLO BAPTISTA, G. M. Fundamentos de espectrorradiometria. In: MENESES, P. R.; DE ALMEIDA, T.; DE MELLO BAPTISTA, G. M. Reflectância dos materiais terrestres. Oficina de Textos, 2019. p. 11–38. eISBN 978-85-7975-319-0. Disponível em: https://books.google.com.br/books?id=maSWDwAAQBAJ&pg=PT5. Acesso em: 3 jan. 2025.

MILAN, A. E.; MORO, R. S. O conceito biogeográfico de ecótono. Terr@ Plural, Ponta Grossa, v. 10, n. 1, p. 75–88, 2016. DOI: https://doi.org/10.5212/TerraPlural.v.10i1.0006. Disponível em: https://revistas.uepg.br/index.php/tp/article/view/9667. Acesso em: 10 fev. 2024. DOI: https://doi.org/10.5212/TerraPlural.v.10i1.0006

MINATTI, E. et al. Mutli-temporal analysis of satellite and NDVI images in a conservation unit. Research, Society and Development, [S.l.], v. 12, n. 4, e1112440839, 2023. DOI: https://doi.org/10.33448/rsd-v12i4.40839. Disponível em: https://rsdjournal.org/index.php /rsd/article/view/40839. Acesso em: 12 fev. 2024. DOI: https://doi.org/10.33448/rsd-v12i4.40839

MOHIUDDIN, G.; MUND, J.-P. Spatiotemporal analysis of land surface temperature in response to land use and land cover changes: a remote sensing approach. Environmental Science Proceedings, [S.l.], v. 29, n. 1, p. 15, 2024. DOI: https://doi.org/10.3390/ECRS2023-15836. Disponível em: https://www.mdpi.com/2673-4931/29/1/15. Acesso em: 12 fev. 2024.

MOREIRA, F. S. DE A.; VITORINO, M. I. Relação de áreas verdes e temperatura da superfície para cidade de Belém. Papers do NAEA, Belém, v. 26, n. 1 (edição 369), p. 1–25, 2017. DOI: https://doi.org/10.18542/papersnaea.v26i1.12145. Disponível em: https://periodicos .ufpa.br/index.php/pnaea/article/download/12145/8355. Acesso em: 12 fev. 2024. DOI: https://doi.org/10.18542/papersnaea.v26i1.12145

MU, Y.; BIGGS, T. W.; DE SALES, F. Forests mitigate drought in an agricultural region of the Brazilian Amazon: atmospheric moisture tracking to identify critical source areas. Geophysical Research Letters, Washington, D.C., v. 48, n. 5, p. e2020GL091380, 2021. DOI: https://doi.org/10.1029/2020GL091380. Disponível em: https://agupubs.onlinelibrary .wiley.com/doi/full/10.1029/2020GL091380. Acesso em: 4 jan. 2024. DOI: https://doi.org/10.1029/2020GL091380

MUNIZ, R. A. et al. Dinâmica espaço-temporal da temperatura de superfície, extraída do TM/Landsat, na bacia do Corumbataí, SP, utilizando imagens do sensor TM/Landsat. Energia na Agricultura, Botucatu, v. 31, n. 2, p. 169–177, 2016. DOI: https://doi.org/10.17224 /EnergAgric.2016v31n2p169-177. Disponível em: https://revistas.fca.unesp.br/index.php /energia/article/view/2051. Acesso em: 13 fev. 2024. DOI: https://doi.org/10.17224/EnergAgric.2016v31n2p169-177

NOVAIS, G. T.; MACHADO, L. A. Os climas do Brasil: segundo a classificação climática de Novais. Revista Brasileira de Climatologia, Dourados, v. 32, n. 19, p. 1–39, 2023. DOI: https://doi.org/10.55761/abclima.v32i19.16163. Disponível em: https://ojs.ufgd.edu.br/ rbclima/article/view/16163. Acesso em: 6 jan. 2025. DOI: https://doi.org/10.55761/abclima.v32i19.16163

ORTIZ PINILLA, J.; ORTIZ RICO, A. F. ¿Pearson y Spearman, coeficientes intercambiables? Comunicaciones en Estadística, Bogotá, v. 14, n. 1, p. 53–63, 2021. DOI: https://doi.org/10.15332/23393076.6769. Disponível em: https://revistas.usanto tomas.edu.co/index.php/estadistica/article/view/6769. Acesso em: 2 mar. 2024. DOI: https://doi.org/10.15332/23393076.6769

PAVÃO, V. M. et al. Temperatura e albedo da superfície por imagens TM Landsat 5 em diferentes usos do solo no sudoeste da Amazônia brasileira. Revista Brasileira de Climatologia, Curitiba, v. 16, p. 169–183, 2015. DOI: https://doi.org/10.5380/ abclima.v16i0.40128. Disponível em: https://ojs.ufgd.edu.br/rbclima/article/view/13812. Acesso em: 13 fev. 2024. DOI: https://doi.org/10.5380/abclima.v16i0.40128

QIN, Y. et al. Forest conservation in Indigenous territories and protected areas in the Brazilian Amazon. Nature Sustainability, Londres, v. 6, p. 295–305, 2023. DOI: https://doi.org/10.1038/s41893-022-01018-z. Disponível em: https://www.nature.com/ articles/s41893-022-01018-z. Acesso em: 13 fev. 2024. DOI: https://doi.org/10.1038/s41893-022-01018-z

REIS, W. K. B. Relação entre uso e ocupação do solo e temperatura de superfície no município de Ji-Paraná, RO. 2021. Trabalho de Conclusão de Curso (Graduação em Engenharia Ambiental e Sanitária) – Fundação Universidade Federal de Rondônia, Campus de Ji-Paraná. Disponível em: https://ri.unir.br/jspui/handle/123456789/3169. Acesso em: 13 jan. 2025.

ROSAS, V.; HOUBORG, R.; MCCABE, M. F. Sensitivity of Landsat 8 Surface Temperature Estimates to Atmospheric Profile Data: A Study Using MODTRAN in Dryland Irrigated Systems. Remote Sensing of Environment, Basel, v. 9, n. 10, art. 988, 2017. DOI: https://doi.org/10.3390/rs9100988. Disponível em: https://www.mdpi.com/2072-4292/9/10/988. Acesso em: 14 fev. 2024. DOI: https://doi.org/10.3390/rs9100988

SEKERTEKIN, A.; BONAFONI, S. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: assessment of different algorithms and emissivity models. Remote Sensing, Basel, v. 12, n. 2, art. 294, jan. 2020. DOI: https://doi.org/10.3390/rs12020294. Disponível em: https://www.mdpi.com/2072-4292/12/2/294. Acesso em: 14 fev. 2024. DOI: https://doi.org/10.3390/rs12020294

SILVA, P. J. Uso e ocupação do solo urbano: uma análise dos impactos ambientais nas áreas de dunas no bairro de Felipe Camarão/Natal-RN. Holos, Natal, v. 5, p. 91–103, 2015. DOI: https://doi.org/10.15628/holos.2015.2350. Disponível em: http://www.redalyc.org/pdf/ 4815/481547288010.pdf. Acesso em: 14 fev. 2024. DOI: https://doi.org/10.15628/holos.2015.2350

SOBRINO, J. A.; JIMÉNEZ-MUÑOZ, J. C.; PAOLINI, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, Amsterdã, v. 90, n. 4, p. 434–440, 2004. DOI: https://doi.org/10.1016/j.rse.2004.02.003. Disponível em: https://www.sciencedirect.com/ science/article/pii/S0034425704000574. Acesso em: 11 fev. 2024. DOI: https://doi.org/10.1016/j.rse.2004.02.003

SOUZA, R. et al. Assessing drought response in the southwestern Amazon forest by remote sensing and in situ measurements. Remote Sensing, Basel, v. 14, n. 7, art. 1733, 2022. DOI: https://doi.org/10.3390/rs14071733. Disponível em: https://www.mdpi.com/2072-4292/14/7/1733. Acesso em: 11 fev. 2024. DOI: https://doi.org/10.3390/rs14071733

TABASSUM, A.; BASAK, R.; SHAO, W. Exploring the relationship between land use land cover and land surface temperature: a case study in Bangladesh and the policy implications for the global south. Journal of Geovisualization and Spatial Analysis, Cham, v. 7, art. 25, 2023. DOI: https://doi.org/10.1007/s41651-023-00155-z. Disponível em: https://link.springer.com/ article/10.1007/s41651-023-00155-z. Acesso em: 11 fev. 2024.

TAN, K. C. et al. Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environmental Earth Sciences, Dordrecht, v. 60, p. 1509–1521, 2010. DOI: https://doi.org/10.1007/s12665-009-0286-z. Disponível em: https://link.springer.com/article/10.1007/s12665-009-0286-z. Acesso em: 10 fev. 2024. DOI: https://doi.org/10.1007/s12665-009-0286-z

TANG, J. et al. Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth. Proceedings of the National Academy of Sciences of the United States of America, Washington, D.C., v. 111, n. 24, p. 8856–8860, 2014. DOI: https://doi.org/10.1073/pnas.1320761111. Disponível em: https://www.pnas.org/doi/ 10.1073/pnas.1320761111. Acesso em: 10 fev. 2024. DOI: https://doi.org/10.1073/pnas.1320761111

TOL, R. S. J. The Economic Effects of Climate Change. Journal of Economic Perspectives, Pittsburgh, v. 23, n. 2, p. 29–51, spring 2009. DOI: https://doi.org/10.1257/jep.23.2.29. Disponível em: https://www.aeaweb.org/articles? id=10.1257/jep.23.2.29. Acesso em: 10 fev. 2024. DOI: https://doi.org/10.1257/jep.23.2.29

TUCKER, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, Amsterdã, v. 8, n. 2, p. 127–150, 1979. DOI: https://doi.org/10.1016/0034-4257(79)90013-0. Disponível em: https://www.sciencedirect .com/science/article/pii/0034425779900130. Acesso em: 15 fev. 2024. DOI: https://doi.org/10.1016/0034-4257(79)90013-0

UNITED STATES. GEOLOGICAL SURVEY. Landsat 8 Data User's Handbook. Version 5.0. Sioux Falls: Department of the interior, 2021. Disponível em: https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-1574_L8_Dat a_Users_Handbook-v5.0.pdf. Acesso em: 13 jan. 2025.

WEBLER, A. D. et al. Mudanças no uso da terra e o particionamento de energia no sudoeste da Amazônia. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, PB, v. 17, n. 8, p. 868–876, 2013. DOI: https://doi.org/10.1590/S1415-43662013000800011. Disponível em: https://www.scielo.br/j/rbeaa/a/5vPZRp97mYrCvXqncPJ9VRB/?lang=pt. Acesso em: 15 fev. 2024. DOI: https://doi.org/10.1590/S1415-43662013000800011

WU, H. et al. Assessing the effects of land use spatial structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China. International Journal of Applied Earth Observation and Geoinformation, Amsterdã, v. 32, n. 1, p. 67–78, 2014. DOI: https://doi.org/10.1016/j.jag.2014.03.019. Disponível em: https://www.sciencedirect.com /science/article/pii/S0303243414000774. Acesso em: 15 fev. 2024. DOI: https://doi.org/10.1016/j.jag.2014.03.019

ZERI, M.; SÁ, L. D. A.; NOBRE, C. A. Contribution of coherent structures to the buoyancy heat flux under different conditions of stationarity over Amazonian forest sites. Atmospheric Science Letters, Oxford, v. 16, n. 3, p. 228–233, 2015. DOI: https://doi.org/10.1002/asl2.544. Disponível em: https://onlinelibrary.wiley.com/doi/pdf/10.1002/asl2.544. Acesso em: 17 fev. 2024. DOI: https://doi.org/10.1002/asl2.544

ZHENG, Z. et al. The higher, the cooler? Effects of building height on land surface temperatures in residential areas of Beijing. Physics and Chemistry of the Earth. Parts A/B/C, Amsterdã, v. 110, p. 149–156, 2019. DOI: https://doi.org/10.1016/j.pce.2019.02.003. Disponível em: https://www.sciencedirect.com/science/article/pii/S1474706518302535. Acesso em: 17 fev. 2024. DOI: https://doi.org/10.1016/j.pce.2019.01.008

ZHOU, W.; CAO, F. Effects of changing spatial extent on the relationship between urban forest patterns and land surface temperature. Ecological Indicators, Amsterdã, v. 109, art. 105778, fev. 2020. DOI: https://doi.org/10.1016/j.ecolind.2019.105778. Disponível em: https://www.sciencedirect.com/science/article/pii/S1470160X19307721. Acesso em: 17 fev. 2024. DOI: https://doi.org/10.1016/j.ecolind.2019.105778

ZUTTA, B. et al. Satellite-derived forest canopy greenness shows differential drought vulnerability of secondary forests compared to primary forests in Peru. Environmental Research Letters, Bristol, v. 18, n. 6, art. 064004, 2023. DOI: https://doi.org/10.1088/1748-9326/acc8ea. Disponível em: https://iopscience.iop.org/article/10.1088/1748-9326/acc8ea. Acesso em: 17 fev. 2024. DOI: https://doi.org/10.1088/1748-9326/acc8ea

Downloads

Publicado

04-07-2025

Como Citar

Evangelista, J. R., Lopes, S. R. T., Ziles, L. M. M. P., Tejas, G. T., & Gobo, J. P. A. (2025). Impacto do desmatamento na temperatura de superfície terrestre e vegetação na Reserva Biológica do Jaru – RO. Revista Brasileira De Climatologia, 37(21), 163–191. https://doi.org/10.55761/abclima.v37i21.18744

Edição

Seção

Artigos