Estimación de los índices HUMIDEX y WBGT de la región metropolitana de Sorocada para el período entre 2007 y 2020

Autores/as

DOI:

https://doi.org/10.55761/abclima.v30i18.14953

Palabras clave:

WBGT, HUMIDEX, conforto térmico

Resumen

Los males asociados a los extremos de calor son una realidad, aunque se le da poca importancia al tema. En parte, la falta de atención se debe a la falta de conocimiento. En parte, es negligencia de las autoridades, con respecto a la inspección, especialmente de las condiciones de trabajo. En este trabajo, se calcularon los índices HUMIDEX y WBGT para la Región Metropolitana de Sorocaba, en el interior de São Paulo, con un conjunto de datos de 14 años. A pesar de estar cerca del océano, Sorocaba no se ve influenciada por la brisa del mar, lo que podría contribuir a aliviar el calor y el clima de la región se caracteriza por altas temperaturas en varios meses del año. La medición de índices bioclimáticos puede contribuir a las políticas de salud pública con el fin de reducir las condiciones insalubres de los trabajadores expuestos a un calor excesivo y, en consecuencia, mejorar la calidad de vida e incluso la productividad, como indican las investigaciones.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Cássia Maria Leme Beu, Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN)

Possui graduação em Meteorologia pela Universidade de São Paulo (1997), mestrado em Meteorologia pela Universidade de São Paulo (2003) e MBA em Gestão Ambiental pelo PECE-USP (2011). Tem experiência na área de Geociências, com ênfase em Meteorologia, atuando principalmente previsão do tempo e clima.

Citas

AHMED, Kazi Rifat et al. A First Assessment of the 2018 European Drought Impact on Ecosystem Evapotranspiration. Remote Sens, Basel, v. 13, n. 1, 16 p., jan. 2021.

ANJOS, Max et al. Sea Breeze Front and Outdoor Thermal Comfort during Summer in Northeastern Brazil. Atmosphere, Basel, v. 11, n. 9, 18 p., sept. 2020.

ANTUNES, Karyn Ferreira et al. Análise do índice UTCI em diferentes tipos de cobertura na cidade de Cuiabá, Mato Grosso. Revista Brasileira de Climatologia, Curitiba, v. 28, 19 p., jan./jun. 2021.

ARMSTRONG, Lawrence et al. Exertional Heat Illness during Training and Competition. Medicine & Science in Sport & Exercise, Indianapolis, v. 39, n.3, p. 556-572, mar. 2007.

BASARIN, Biljana; LUKIC, Tin; MATZARAKIS, Andreas. Review of Biometeorology of Heatwaves and Warm Extremes in Europe. Atmosphere, Basel, v. 11, n. 11, nov. 2020, 21 p.

BITENCOURT, Daniel Pires et al. Frequência, Duração, Abrangência Espacial e Intensidade das Ondas de Calor no Brasil. Revista Brasileira de Meteorologia, Rio de Janeiro, v. 31, n. 4, 17 p., out./dez. 2016.

CAMPBELL, S. et al. Heatwave and health impact research: A global review. Health & Place, [s. l.], v. 53, 210-218., sept. 2018.

Canadian Centre for Ocupational Health and Safety. Humidex rating and work. [S. l.]: CCOHS, 2019. Disponivel em: https://www.ccohs.ca/oshanswers/phys_agents/humidex.html. Acesso em: 09 abr. 2021.

Companhia Ambiental do Estado de São Paulo. Qualidade do ar no Estado de São Paulo - 2019. São Paulo: CETESB, 2020.

COSTA, Iago Turba et al. Extreme Weather Conditions and Cardiovascular Hospitalizations in Southern Brazil. Sustainability, Basel, v. 13, n. 21., 17 p., nov. 2021.

Departamento Estadual de Trânsito. Estatísticas de trânsito. São Paulo: Detran, 2021. Disponivel em: https://www.detran.sp.gov.br. Acesso em: 23 nov. 2021.

DUBE, Anumeha; SINGH, Harvir.; ASHRIT, Raghavendra. Heat Waves in India during MAM 2019: Verification of ensemble based probabilistic forecasts and impact of bias correction. Atmospheric research, [s. l.], v. 246, 251, 19 p., apr. 2021.

FITCHETT, Jeniffer. Exploring extreme warm temperature trends in South Africa: 1960–2016. Theoretical and Applied Climatology, [s.l.], v. 143, n. 7, p. 1341 – 1360, 2021.

FONTAN, Silvia; RUSTICUCCI, Matilde. Climate and Health in Buenos Aires: A Review on Climate Impact on Human Health Studies Between 1995 and 2015. Front. Environ. Sci., Lausanne, v. 8, 8 p., feb. 2021.

FREITAS, Chris de; GRIGORIEVA, Elena. A comprehensive catalogue and classification of huma thermal climate indices. Int. J. Biometeorol, [s. l.], v. 59, p. 109 - 120, jan. 2015.

GUIGMA, Kiswendsida; GUICHARD, Françoise; MARTIN, Todd; PEYRILLE, PHILIPPE; WANG, Yi. Atmospheric tropical modes are important drivers of Sahelian springtime heatwaves. Climate Dynamics, [s. l.], v. 56, n. 5-6, 21 p., mar. 2021.

HAVENITH, George. Temperature Regulation, Heat Balance and Climatic Stress. In: KIRCH, W.; BERTOLLINI, R.; MENNE, B. Extreme Weather Events and Public Health Responses. Berlin: Springer, 2005. cap 7, p. 69 – 80.

Institute of Geography and Spatial Organization. Bioklima – Univeral tool for bioclimatic and thermophysiological studies. Warsaw: IGSO, 2011. Disponivel em: https://www.igipz.pan.pl/bioklima.html. Acesso em: 01 abr. 2021.

International Labor Organization. Assessment of occupational heat strain and mitigation strategies in Qatar. Thessaly: ILO, 2019.

Instituto Nacional de Meteorologia. Dados Meteorológicos. Brasília: INMET, 2021. Disponivel em: https://portal.inmet.gov.br/. Acesso em: 15 jan. 2021.

KING, Malcolm; REEDER, Michael. Extreme heat events from an object viewpoint with application to south‐east Australia. International journal of climatology, [s. l.], v. 41, p. 2693 – 2709, jan. 2021.

LINARES, Cristina; DÍAZ, Julio. Temperaturas extremadamente elevadas y su impacto sobre la mortalidad diaria según diferentes grupos de edad. Gac Sanit., Alicante, v. 22, n.2, p. 115-119, mar. 2008.

LÓPEZ-BUENO, José Antonio et al. Analysis of the impact of heat waves on daily mortality in urban and rural areas in Madrid. Environmental research, [s.l.], v. 195, 18p., apr. 2021.

MANN, Janet et al. Elevated Calf Mortality and Long-Term Responses of Wild Bottlenose Dolphins to Extreme Climate Events: Impacts of Foraging Specialization and Provisioning. Front. Mar. Sci., Lausane, 8, 18 p., mar. 2021.

MCGREGOR, Glenn; VANOS, Jennifer. Heat: a primer for public health researchers. Public Health, [s. l.], v. 161, p. 138-146, Aug 2018.

MCMICHAEL, Anthony et al. International study of temperature, heat, and urban mortality: the 'ISOTHUM' project. International Journal of Epidemiology, [s. l.], v. 37, n. 5, p. 1121-1131, oct. 2008.

MENDES, Lidiana Pinho; TOMMASELLI, José Tadeu Garcia. Varredoras(es) de rua de Presidente Prudente/SP/BR: um estudo sobre a insalubridade térmica. Revista Brasileira de Climatologia, Curitiba, v. 27, jul./dez. 2020.

MISTRY, Malcolm. A high spatiotemporal resolution global gridded dataset of historical huma disconfort indices. Atmosphere, Basel, v. 11, n. 8, 22 p., aug. 2020.

NAIRN, John; FAWCETT, Robert. The excess heat factor: a metric for heatwave intensity and its use in classifying heatwave severity. Int. J. Environ. Res. Public Health, Basel, v. 12, n. 1, p. 227-253, jan. 2015.

OLIVEIRA, Ana. et al. Heatwaves and summer urban heat islands: a daily cycle approach to unveil the urban thermal signal changes in Lisbon, Portugal. Atmosphere, Basel, v. 12, n. 3, 23 p., mar. 2021.

PASCAL, Mathilde et al. Extreme heat and acute air pollution episodes: A need for joint public health warnings? Atmospheric environment, [s. l.], v. 249, n.1, 18 p., mar. 2021.

PINHEIRO, Samya de Lara. Lins de Araújo et al. Efeitos isolados e sinérgicos do MP10 e da temperatura média na mortalidade por doenças cardiovascularees e respiratórias. Rev. Saúde Pública, São Paulo, v. 48, n. 6, p. 881-888, dez. 2014.

RAYMOND, Colin; MATTHEWS, Tom; HORTON, Radley. The emergene of heat and humidity too severe for human tolerance. Science Advances, [s. l.], v. 6, n. 19, 9 p., may. 2020.

RUAS, Alvaro Cesar et al. Heat stress monitoring based on heart rate measurements. Rev. Bras. Med. Trab., São Paulo, v. 18, n.2, p. 232 – 240, fev. 2020.

RUSSO, Simone et al. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos., Hoboken, v. 119, n. 22, p. 500-512, oct. 2014.

SARÀ, Gianluca et al. Multiple climate-driven cascading ecosystem effects after the loss of a foundation species. Science of the total environment, [s. l.], v. 770, 12 p., may. 2021.

SON, Ji-Young et al. The impact of temperature on mortality in a subtropical city: effects of cold, heat, and heat waves in São Paulo, Brazil. Int. J. Biometeorol., [s. l.], v. 60, n.1, p. 113-121, jan. 2016.

World Meteorological Organization. Heatwaves and Health: Guidance on Warning-System Development, Geneva: WMO, 2015.

WU, Xiaojun et al. Identifying the dominant driving factors of heat waves in the North China Plain. Atmospheric research, [s. l.], v. 252, n. 7, 17 p., jan. 2021.

WU, Yuting; GRAW, Kathrin; MATZARAKIS, Andreas. Comparison of thermal confort between Sapporo and Tokyo - The case of the Olympics 2020. Atmosphere, Basel, v. 11, n. 5, 13 p., may. 2020.

ZHANG, Yi et al. Temperature of Paved Streets in Urban Mockups and Its Implication of Reflective Cool Pavements. Atmosphere, Basel, v. 12, n. 5, 12 p., may. 2021.

ZHAO, Lei et al. Interactions between urban heat islands and heat waves. Environmental Research Letters, [s. l.], v. 13, n. 3, 11 p., mar. 2018.

Publicado

16/02/2022

Cómo citar

Beu, C. M. L. (2022). Estimación de los índices HUMIDEX y WBGT de la región metropolitana de Sorocada para el período entre 2007 y 2020. Revista Brasileña De Climatología, 30(18), 313–336. https://doi.org/10.55761/abclima.v30i18.14953

Número

Sección

Artigos