Agreement analysis of precipitation data estimated by Remote Sensing in mesorregions of the state of Pernambuco - Brazil

Authors

DOI:

https://doi.org/10.55761/abclima.v36i21.19499

Keywords:

Hydrological Monitoring, CHIRPS, GPM-IMERG, Statistical Validation

Abstract

The most common way to measure precipitation is through ground-based rain gauges. However, such monitoring systems present some operational difficulties. In this context, precipitation measurements by Remote Sensing offer an effective and low-cost alternative, demonstrating the ability to solve existing difficulties in each region. This research aims to analyze the agreement of CHIRPS and GPM-IMERG satellite products in two mesoregions of the state of Pernambuco, Brazil, on daily, monthly and annual time scales. For this purpose, well-established statistical methodologies were used, such as Root Mean Square Error (REMQ), Nash-Sutcliffe Efficiency (NSE), Percent Bias (PBIAS), Pearson's Correlation Coefficient (r) and Willmott's Index of Agreement (d). From the results, it was identified that CHIRPS presented a greater capacity to approach the values measured by the rain gauges when compared to GPM-IMERG. The CHIRPS r and d values were better than those of GPM-IMERG for monthly and annual data, however, regarding daily data, GPM-IMERG presented slightly better values. In relation to PBIAS, it was observed that CHIRPS has a tendency to underestimate precipitation values, while GPM-IMERG tends to overestimate them.

Downloads

Download data is not yet available.

Author Biographies

Frederico Antonio Peregrino Wanderley da Costa Neto, Federal University of Pernambuco

Agricultural and Environmental Engineer graduated from the Federal Rural University of Pernambuco (UFRPE), in 2020 and pursuing a master's degree in Civil Engineering from the Federal University of Pernambuco (UFPE). I currently work in the area of ​​Water Resources consultancy, assisting in the development of projects, audits and consultancy for tailings and waste rock dams and drained piles. I also work with sizing surface drainage systems and evaluating their hydraulic safety.

Camila Oliveira de Britto Salgueiro, Federal University of Pernambuco

Civil Engineer from the Federal University of Pernambuco (2021), with participation in the Institutional Program for Initiation Scholarships in Technological Development and Innovation (PIBIT) in 2017-2018, in the Institutional Program for Scientific Initiation Scholarships (PIBIC) in 2018-2019 and monitoring in the Applied Hydrology 1 discipline, from the Civil and Environmental Engineering department during the semester of 2019.2. He is currently a Product Assistant at TPF Engenharia LTDA, starting in June/2021, developing activities focused on Water Resources and Geotechnics in the area of ​​dams.

Rebecca Borja Gonçalves Gomes de Menezes, Federal University of Pernambuco

Holds a bachelor's and master's degree in Civil Engineering from the Federal University of Pernambuco (2021). She worked as a scholarship monitor for Technical Drawing 3 in 2018 and also as a volunteer monitor for Three-Dimensional Graphic Geometry in 2017. She was part of the junior company Prisma Consultoria e Projetos de Engenharia working in the area of ​​People Management and in the execution of engineering projects. He interned at the National Electric System Operator in the Water Resources area, where he developed his knowledge in the area of ​​hydraulic programming and flow forecasting.

Sylvana Melo dos Santos, Federal University of Pernambuco

Has a degree, master's degree and doctorate in Civil Engineering from the Federal University of Pernambuco (UFPE), with a period of 2 years of studies (sandwich doctorate) in Germany (Institut für Erdmessung - Universität Hannover). She is currently a Full Professor at UFPE, Department of Civil and Environmental Engineering. Permanent member of the Postgraduate Program in Civil Engineering (PPGEC) at UFPE, the Postgraduate Program in Civil and Environmental Engineering (PPGECAM) at UFPE and the Professional Master's Degree in National Network in Management and Regulation of Water Resources (ProfAgua) . He coordinated PPGECAM from 2010 to 2012 and ProfÁgua (UFPE) from 2019 to 2021. Coordinates/acts on projects in the area of ​​Civil Engineering, with an emphasis on Hydrology, mainly on the following topics: groundwater, soil subsidence, alternative technologies for semiarid region (cisterns) and compensatory techniques for urban drainage (ecological roofs).

Leidjane Maria Maciel de Oliveira, Federal University of Pernambuco

PhD in Civil Engineering from the Federal University of Pernambuco - Environmental Technology and Water Resources (2012), Post-doctorate in Civil Engineering from the Federal University of Pernambuco (UFPE), Master's degree in Civil Engineering from the Federal University of Pernambuco - Environmental Technology and Water Resources ( 2007) and a degree in Civil Engineering from the Catholic University of Pernambuco (1991). She is currently an Adjunct Professor at the Federal University of Pernambuco - Center for Technology and Geosciences (CTG) - Department of Civil Engineering, Permanent Member of the Postgraduate Program in Civil Engineering (PPGEC), Permanent Member of the Professional Master's Degree in the National Network in Management and Water Resources Regulation (ProfÁgua). He was a Permanent Member of the Postgraduate Program in Geodetic Sciences and Geoinformation Technologies at UFPE from 2016 to 2021. He was a DTI scholarship holder - Study and Project Financier - FINEP and the National Council for Scientific and Technological Development-CNPq of the BEER/REHISA Project and Distance Tutor in Water Resources Management in the Technology in Environmental Management Course by the Open University Program of Brazil - UAB with the executing body being IFPE - Federal Institute of Education, Science and Technology of Pernambuco. He has experience in the area of ​​Civil Engineering, with an emphasis on Environmental Technology and Water Resources, working mainly on the following topics: Hydrology, remote sensing, water resources, experimental basin and lysimetry.

References

ANA. Agência Nacional de Águas, 2019. HidroWeb v3.1.1. Séries históricas das estações. Disponível em: <http://www.snirh.gov.br/hidroweb/serieshistoricas>. Acesso em: 07 abr. 2025.

ANDRADE, J. M.; NETO, A. R.; BEZERRA, U. A.; MORAES, A. C. C.; MONTENEGRO, S. M. G. L. A comprehensive assessment of precipitation products: temporal and spatial analyses over terrestrial biomes in Northeastern Brazil. Remote Sensing Applications: Society and Environment, v. 28, p.100842, nov. 2022. https://doi.org/10.1016/j.rsase.2022.100842. DOI: https://doi.org/10.1016/j.rsase.2022.100842

APAC. Agência Pernambucana de Águas e Clima. Atlas climatológico do Estado de Pernambuco: normais climatológicas 1991-2020. Agência Pernambucana de Águas e Clima. Gerência de Meteorologia e Mudanças Climáticas. Recife: APAC, GMMC, 2023. Disponível em: <https://www.apac.pe.gov.br/images/webAtlas-Climatologico-do-Estado-de-Pernambuco-APAC.pdf>. Acesso em: 08 jan. 2025.

APAC. Agência Pernambucana de Águas e Clima. Mapas de precipitação e outras informações. Recife, Pernambuco. 2024. Disponível em: <https://www.apac.pe.gov.br/climatologia/519-climatologia>. Acesso em: 08 jan. 2025.

APAC. Agência Pernambucana de Águas e Clima. Plano Estadual de Recursos Hídricos de Pernambuco – Tomo I – Volume 1. Recife, Pernambuco. 2022.

ARAÚJO, H. L.; SILVA, T. L. A.; DUARTE S. N.; RODRIGUES, J. A. M.; ARAÚJO, E. L.; SANTOS, A. P. Análise comparativa entre dados de precipitação observados em superfície e estimados por satélite TRMM na região norte do Tocantins. Revista Brasileira de Meio Ambiente, v.10, n.1, p.14-22, 2022. https://doi.org/10.5281/zenodo.6791581.

COSTA, F. F.; RUFINO, I. A. A.; ARAGÃO, R.; FILHO, R. S. R. Performance evaluation of four remote-sensing products throughout precipitation estimation in State of the Paraíba, Northeast Brazil. Remote Sensing Applications: Society and Environment, p. 101256, 2024. https://doi.org/10.1016/j.rsase.2024.101256. DOI: https://doi.org/10.1016/j.rsase.2024.101256

FUNK, C.; PETERSON, P.; LANDSFELD, M.; PEDREROS, D.; VERDIN, J.; SHUKLA, S.; HUSAK, G.; ROWLAND, J.; HARRISON, L.; HOELL, A.; MICHAELSEN, J. The climate hazards infrared precipitation with stations — a new environmental record for monitoring extremes. Scientific data, v. 2, p. 150066, 2015. https://doi.org/10.1038/sdata.2015.66. DOI: https://doi.org/10.1038/sdata.2015.66

GADELHA, A. N.; COELHO, V. H. R.; XAVIER, A. C.; BARBOSA, L. R.; MELO, D. C. D.; XUAN, Y.; HUFFMAN, G. J.; PETERSEN, W. A.; ALMEIDA, C. N. Grid box-level evaluation of IMERG over Brazil at various space and time scales. Atmospheric Research, v. 218, 2019, Pages 231-244, ISSN 0169-8095. https://doi.org/10.1016/j.atmosres.2018.12.001. DOI: https://doi.org/10.1016/j.atmosres.2018.12.001

GUPTA, H. V.; SOROOSHIAN, S.; YAPO, P. O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. Journal of hydrologic engineering, v. 4, n. 2, p. 135-143, 1999. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135). DOI: https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135)

HUFFMAN, G. J.; STOCKER, E. F.; BOLVIN, D. T.; NELKIN, E. J.; TAN, J. GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V07. Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, 2023. DOI: 10.5067/GPM/IMERG/3B-HH/07. Disponível em: <https://catalog.data.gov/dataset/gpm-imerg-final-precipitation-l3-half-hourly-0-1-degree-x-0-1-degree-v07-gpm-3imerghh-at-g>. Acesso em: 15 set. 2024.

HONG, Y.; TANG, G.; MA, Y.; HUANG, Q. HAN, Z.; ZENG, Z.; YANG, Y.; WANG, C.; GUO, Z. Remote Sensing Precipitation: Sensors, Retrievals, Validations, and Applications. In: LI, X.; VEREECKEN, H. (Eds.). Observation and Measurement of Ecohydrological Processes. Ecohydrology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. p. 1–23. https://doi.org/10.1007/978-3-662-47871-4_4-1. DOI: https://doi.org/10.1007/978-3-662-48297-1_4

HONG, Y.; ZHANG, Y.; KHAN, S. Hydrologic remote sensing: capacity building for sustainability and resilience. 1. Ed. Boca Raton: CRC Press, 2016. https://doi.org/10.1201/9781315370392. DOI: https://doi.org/10.1201/9781315370392

HOSSEINI-MOGHARI, S. M.; TANG, Q. Can IMERG data capture the scaling of precipitation extremes with temperature at different time scales? Geophysical Research Letters, 49, 2022. https://doi.org/10.1029/2021GL096392. DOI: https://doi.org/10.1029/2021GL096392

IBGE. INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Divisão Regional do Brasil em mesorregiões e microrregiões geográficas. Biblioteca IBGE. 1: 52–55. 1990.

IBGE. INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Malha Municipal Digital e Áreas Territoriais 2022: Informações Técnicas Legais para Utilização dos Dados Publicados. Disponível em: <https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais/15774-malhas.html?edicao=36516&t=downloads>. Acesso em: 07 abr. 2025.

IBGE. INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Malha Municipal Digital e Áreas Territoriais 2023: Informações Técnicas Legais para Utilização dos Dados Publicados. Disponível em: <https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais/15774-malhas.html?edicao=42093&t=downloads>. Acesso em: 07 abr. 2025.

LÓPEZ-BERMEO, C. ; MONTOYA, R. D. ; CARO-LOPERA, F. J. ; DÍAZ-GARCÍA, J. A. Validation of the accuracy of the CHIRPS precipitation dataset at representing climate variability in a tropical mountainous region of South America. Physics and Chemistry of the Earth, Parts A/B/C, v. 127, p. 103184, 2022. https://doi.org/10.1016/j.pce.2022.103184. DOI: https://doi.org/10.1016/j.pce.2022.103184

KIDD, C.; BECKER, A.; HUFFMAN, G. J.; MULLER, C. L.; JOE, P.; JACKSON, G. S.; KIRSCHBAUM, D. B. So, How Much of the Earth’s Surface Is Covered by Rain Gauges? Bulletin of the American Meteorological Society, v. 98, n. 1, p. 69–78, jan. 2017. https://doi.org/10.1175/BAMS-D-14-00283.1. DOI: https://doi.org/10.1175/BAMS-D-14-00283.1

LIMA JÚNIOR, A. F.; ZANELLA, M. E.; SALES, M. C. L. Avaliação do desempenho da precipitação estimada pelo CHIRPS para o Estado do Ceará, Brasil. Revista Brasileira de Climatologia, v. 32, p. 363-382, 2023. https://doi.org/10.55761/abclima.v32i19.16143. DOI: https://doi.org/10.55761/abclima.v32i19.16143

LIU, Z. Accuracy of satellite precipitation products in data-scarce Inner Tibetan Plateau comprehensively evaluated using a novel ground observation network. Journal of Hydrology: Regional Studies, v. 47, p. 101405, 2023. https://doi.org/10.1016/j.ejrh.2023.101405. DOI: https://doi.org/10.1016/j.ejrh.2023.101405

MAHMOUD, M. T.; MOHAMMED, S. A.; HAMOUDA, M. A.; MOHAMED, M. M. Impact of topography and rainfall intensity on the accuracy of imerg precipitation estimates in an arid region. Remote Sensing, v. 13, n. 1, p. 13, 2021. https://doi.org/10.3390/rs13010013. DOI: https://doi.org/10.3390/rs13010013

MEDEIROS-FEITOSA, J. R.; OLIVEIRA, C. W. Estudo comparativo dos dados de precipitação do satélite TRMM e postos pluviométricos no estado do Ceará, Brasil. Revista Geográfica de América Central, n. 65, p. 239-262, 2020. http://dx.doi.org/10.15359/rgac.65-2.10. DOI: https://doi.org/10.15359/rgac.65-2.10

NASA. National Aeronautics and Space Administration. IMERG: Integrated Multi-satellitE Retrievals for GPM. Disponível em: <https://gpm.nasa.gov/data/imerg>. Acesso em: 08 jan. 2025.

NASCIMENTO, J. G.; ALTHOFF, D.; BAZAME, H. C.; M. U. NEALE, C.; N. DUARTE, S.; L. RUHOFF, A.; Z. GONÇALVES, I. Evaluating the Latest IMERG Products in a Subtropical Climate: The Case of Paraná State, Brazil. Remote Sensing. 2021, 13, 906. https:// doi.org/10.3390/rs13050906. DOI: https://doi.org/10.3390/rs13050906

NASH, J. E.; SUTCLIFFE, J. V. River flow forecasting through conceptual models part I—A discussion of principles. Journal of hydrology, v. 10, n. 3, p. 282-290, 1970. https://doi.org/10.1016/0022-1694(70)90255-6. DOI: https://doi.org/10.1016/0022-1694(70)90255-6

NÓBREGA, A. E. L.; NEVES, Y. T. Determinação e espacialização de parâmetros de equações de chuvas intensas para o estado da Paraíba. Geousp, v. 28, n. 3, e215955. 2024. https://doi.org/10.11606/issn.2179-0892.geousp.2024.215955pt. DOI: https://doi.org/10.11606/issn.2179-0892.geousp.2024.215955

PEARSON, K. VII. Mathematical contributions to the theory of evolution.—III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A, containing papers of a mathematical or physical character, n. 187, p. 253-318, 1896. https://doi.org/10.1098/rsta.1896.0007. DOI: https://doi.org/10.1098/rsta.1896.0007

RAMADHAN, R.; YUSNAINI, H.; MARZUKI, M.; MUHARSYAH, R.; SURYANTO, W.; SHOLIHUN, S.; VONNISA, M.; HARMADI, H.; NINGSIH, A.P.; BATTAGLIA, A.; HASHIGUCHI, H.; TOKAY, A. Evaluation of GPM IMERG performance using gauge data over Indonesian maritime continent at different time scales. Remote Sensing, v. 14, n. 5, p. 1172, 2022. https://doi.org/10.3390/rs14051172. DOI: https://doi.org/10.3390/rs14051172

RODRIGUES, D. T.; GONÇALVES, W. A.; SPYRIDES, M. H.; SANTOS E SILVA, C. M.; DE SOUZA, D. O. Spatial distribution of the level of return of extreme precipitation events in Northeast Brazil. International Journal of Climatology, v. 40, n. 12, p. 5098-5113, 2020. DOI: 10.1002/joc.6507 DOI: https://doi.org/10.1002/joc.6507

SHABANKAREH, R. N. T.; ZIAEE, P.; ABEDINI, M. J. Evaluation of IMERG precipitation product over various temporal scales in a semi-arid region of southern Iran. Journal of Arid Environments, v. 220, 2024, 105102, ISSN 0140-1963. https://doi.org/10.1016/j.jaridenv.2023.105102. DOI: https://doi.org/10.1016/j.jaridenv.2023.105102

SHAHIDIAN, S.; GUIMARÃES, R.; RODRIGUES, C.; CHAMBEL, A.; ALEXANDRE, C.; SANTOS, F.; BASCH, G.; ANDRADE, J. A.; COELHO, R. Hidrologia Agrícola. Évora: Escola de Ciência e Tecnologia da Universidade de Évora e Instituto de Ciências Agrárias e Ambientais Mediterrânicas, 2017.

ULIANA, E. M.; SOUSA JUNIOR, M. F.; ARAUJO, J. A.; AIRES, U. R. V.; SILVA, D. D.; ZANUZO, M. R.; CRUZ, I. F. Validação e análise espaço-temporal de dados de precipitação obtidos por sensoriamento remoto CHIRPS para o estado de Mato Grosso, Brasil. Revista Brasileira de Climatologia, v. 35, p. 630-654, 2024. https://doi.org/10.55761/abclima.v35i20.18858. DOI: https://doi.org/10.55761/abclima.v35i20.18858

WILLMOTT, C. J.; ACKLESON, S. G.; DAVIS, R. E.; FEDDEMA, J. J.; KLINK, K. M.; LEGATES, D. R.; O’DONNELL, J.; ROWE, C. M. Statistics for the evaluation and comparison of models. Journal of Geophysical Research: Oceans, v. 90, n. C5, p. 8995-9005, 1985. https://doi.org/10.1029/JC090iC05p08995 DOI: https://doi.org/10.1029/JC090iC05p08995

Published

21/04/2025

How to Cite

Peregrino Wanderley da Costa Neto, F. A., Oliveira de Britto Salgueiro, C., Borja Gonçalves Gomes de Menezes, R., Melo dos Santos, S., & Maria Maciel de Oliveira, L. (2025). Agreement analysis of precipitation data estimated by Remote Sensing in mesorregions of the state of Pernambuco - Brazil. Brazilian Journal of Climatology, 36(21), 452–477. https://doi.org/10.55761/abclima.v36i21.19499

Issue

Section

Artigos