Surface urban heat island(s) in diffuse urbanization areas: the case study of Braga and Guimarães municipalities (Portugal)
DOI:
https://doi.org/10.55761/abclima.v32i19.16123Keywords:
Urban Climate, Land Surface Temperature, Diffuse Urbanization, LandsatAbstract
The urbanization process implies the conversion of permeable surfaces, with greater or lesser vegetation cover, into impervious surfaces (non-evaporative and strong heat storage capacity), which triggers the individualization of heat islands. This investigation analyzes the spatiotemporal evolution of the surface heat island (SHI) in the municipalities of Braga and Guimarães, seeking to establish its relationship with the urban growth that occurred in the period 1984-2016. Based on 6 Landsat images, we extract the urban tissue and the land surface temperature (LST) The areas with SHI effect are delimited from thresholds defined based on the mean and the standard deviation of LST in each date, do not requiring this method the previous traditional division of the territory in urban/non-urban. Nevertheless, considering that SHI does not occur exclusively in urban areas, it is importante to determine their real contribution. Between 1984 and 2016, there was an increase in the intensity and extent of SHI, due to the urban growth of Braga and Guimarães. Consequently, there is a reduction in the proportion of non-urban areas affected by SHI; however, the proportion of e urban area affected by this phenomenon also decreases. This apparent paradox is explained by the sparse edification and the roads which do not seem to constitute spots hot enough for the individualization of the SHI. In this territory, the assumes a rhizomatic configuration, alienates the heat island metaphor itself.
Downloads
References
BHATA, B. Analysis of Urban Growth and Sprawl from Remote Sensing Data. Heidelberg, Dordrecht, London, New York: Springer, 2010.
CHEN, X.; ZHAO, H.; LI, P.; YIN, Z. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104(2), p.133-146, 2006. Disponível em https://doi.org/10.1016/j.jag.2017.12.009. Acesso em: 04 mai. 2022.
CURRAN, P. Principles of remote sensing. London: Longman Group Limited, 1985.
DAVEAU, S. Mapas Climáticos de Portugal Nevoeiros e Nebulosidade Contrastes Térmicos. Lisboa. Lisboa: Memórias do Centro de Estudo Geográficos, 1985.
DEILAMI, K.; KAMRUZZAMAN, M.; LIU, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation, 67, p.30-42, 2018. Disponível em: https://doi.org/10.1016/j.rse.2005.11.016. Acesso em: 25 mai. 2022.
DELEUZE, G.; GUATTARI, F. Mil platôs: capitalismo e esquizofrenia – volume. 1. 2º ed. São Paulo: Editora 34, 2000.
EEA. Climate change impacts and vulnerability in Europe 2012. An indicator-based report. Copenhagen: European Environment Agency, 2012.
FORMAN, R. Urban Ecology Science of Cities. New York: Cambridge University Press, 2014.
GANGULY, K.; SHANKAR, G. Geo-environmental appraisal for studying urban environment and its associated biophysical parameters using remote sensing and GIS technique. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(8), p.717, 2014. Disponível em: 10.5194/isprsarchives-XL-8-717-2014. Acesso em: 25 abr. 2022.
GUHA, S.; GOVIL, H.; DEY, A.; GILL, N. Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. European Journal of Remote Sensing, 51(1), p.667-678, 2018. Disponível em https://doi.org/10.1080/22797254.2018.1474494. Acesso em: 25 mai. 2022.
GUNAWARDENA, K.; WELLS, M.; KERSHAW, T. Utilising green and bluespace to mitigate urban heat island intensity. Science of the Total Environment, 584, p.1040-1055, 2017. Disponível em: https://doi.org/10.1016/j.scitotenv.2017.01.158. Acesso em: 15 mai. 2022.
GUO, G.; WU, Z.; XIAO, R.; CHEN, Y.; LIU, X.; ZHANG, X. Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landscape and Urban Planning, p.135, 1-10, 2015. Disponível em: https://doi.org/10.1016/j.landurbplan.2014.11.007. Acesso em: 15 abr. 2022.
IPMA Boletim Climatológico – julho 2016, 2016. Disponível em http://www.ipma.pt/resources.www/docs/im.publicacoes/edicoes.online/20160804/ZtQLGjZAOdMxcajQukNP/cli_20160701_20160731_pcl_mm_co_pt.pdf. Acesso em: 25 mai. 2022.
IPMA. Normal Climatológica de Braga, 2019. Disponível em: http://www.ipma.pt/pt/oclima/normais.clima/004/. Acesso em: 25 mai. 2022.
JÚNIOR, J.; AMORIM, M. reflexões acerca do Sistema Clima Urbano e sua aplicabilidade: pressupostos teórico-metodológicos e inovações técnicas. Revista do Departamento de Geografia da Universidade de São Paulo, Volume Especial(2016), p.160-173, 2016. Disponível em: https://doi.org/10.11606/rdg.v0ispe.119402. Acesso em: 13 abr. 2022.
KLOCK, L.; ZWART, S.; VERHAGEN, H.; MAURI, E. The surface heat island of Rotterdam and its relationship with urban surface characteristics. Resources, Conservation and Recycling, 64, p.23-29, 2012. Disponível em: https://doi.org/10.1016/j.resconrec.2012.01.009. Acesso em: 07 mai. 2022.
KUTTLER, W. The urban climate–basic and applied aspects. In: SHULENBERGER, E., ENDLICHER, W., ALBERTI, M., BRADLEY, G., RYAN, C., ZUMBRUNNEN, C., SIMON, U., MARZLUFF, J. (eds.). Urban Ecology. Boston: Springer, 2008, p.233-248.
KWARTENG, A.; SMALL, C. Remote Sensing of Environmental Conditions. In: RASHED, T., JÜRGENS, C. (eds.). Remote Sensing of Urban and Suburban Areas. Heidelberg, Dordrecht, London & New York: Springer, 2010, p.219-244.
LIU, L.; ZHANG, Y. Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong. Remote Sensing, 3(7), p.1535-1552, 2011. Disponível em: https://doi.org/10.3390/rs3071535. Acesso em: 08 abr. 2022.
LOWRY, W. Empirical estimation of urban effects on climate: a problem analysis. Journal of Applied Meteorology, 16(2), p.129-135, 1977. Disponível em: https://doi.org/10.1175/1520-0450(1977)016%3C0129:EEOUEO%3E2.0.CO;2. Acesso em: 02 mai. 2022.
MA, Y.; KUANG, Y.; HUANG, N. Numerical study of urban expansion and its influence on urban environment using Landsat TM/ETM+ images. Urban Remote Sensing Joint Event, IEEE, 2009.
MARTIN, P.; BAUDOUIN, Y.; GACHON, P. An alternative method to characterize the surface urban heat island. International Journal of Biometeorology, 59(7), p.849-861, 2015. Disponível em: https://doi.org/10.1007/s00484-014-0902-9. Acesso em: 19 mai. 2022.
MIRZAEI, P. Recent challenges in modeling of urban heat island. Sustainable Cities and Society, 19, p.200-206, 2015. Disponível em: https://doi.org/10.1016/j.scs.2015.04.001. Acesso em: 02 mai. 2022.
OKE, T. Methods in urban climatology. Applied Climatology, 14, 19-29, 1984.
OKE, T. Boundary layer climates. London: Routledge, 1987.
OKE, T. Towards better scientific communication in urban climate. Theoretical and Applied Climatology, 84(1-3), p.179-190, 2006. Disponível em: https://doi.org/10.1007/s00704-005-0153-0. Acesso em: 3 mar. 2022.
OKE, T.; Mills, G.; Christen, A.; Voogt, J. Urban Climates. Cambridge: Cambridge University Press, 2017. Disponível em: https://doi.org/10.1017/9781139016476. Acesso em: 08 abr. 2022.
QIAO, Z.; TIAN, G.; ZHANG, L.; XU, X. Influences of urban expansion on urban heat island in Beijing during 1989–2010. Advances in Meteorology, 11p, 2014. Disponível em: https://doi.org/10.1155/2014/187169. Acesso em:18 abr. 2022.
RAO, P. Remote sensing of urban heat islands from an environmental satellite. Bulletin of the American Meteorological Society, 53, p.647-648, 1972.
RIBEIRO, O. Opúsculos Geográficos. V Volume – Temas Urbanos. 2ª ed. Lisboa: Fundação Calouste Gulbenkian, 1994.
ROTH, M. Urban heat islands. In: FERNANDO, H. (ed.). Handbook of Environmental Fluid Dynamics - Volume Two. New York: CRC Press/Taylor & Francis Group, 2013, p.143-162.
SOBRINO, J.; IRAKULIS, I. A methodology for comparing the surface urban heat island in selected urban agglomerations around the world from Sentinel-3 SLSTR Data. Remote Sensing, 12(2052), 29p., 2020. Disponível em: https://doi.org/10.3390/rs12122052. Acesso em: 08 abr. 2022.
SOUCH, C.; GRIMMOND, S. Applied climatology: urban climate. Progress in Physical Geography, 30(2), p.270-279, 2006. Disponível em: https://doi.org/10.1191/0309133306pp484pr. Acesso em: 23 abr. 2022.
VOOGT, J.; OKE, T. Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), p.370-384, 2003. Disponível em: https://doi.org/10.1016/S0034-4257(03)00079-8. Acesso em:18 abr. 2022.
WENG, Q. A remote sensing GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. International Journal of Remote Sensing, 22(10), p.1999-2014, 2001. Disponível em: https://doi.org/10.1080/713860788. Acesso em:16 mar. 2022.
WENG, Q. Remote Sensing of Urban Biophysical Environments. In WENG, Q. (ed.), Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications. New York: CRC Press, 2011, p.503-516.
WILSON, J.; CLAY, M.; MARTIN, E.; STUCKEY, D.; VEDDER-RISCH, K. Evaluating environmental influences of zoning in urban ecosystems with remote sensing. Remote Sensing of Environment, 86(3), p.303-321, 2003. Disponível em: https://doi.org/10.1016/S0034-4257(03)00084-1. Acesso em:18 abr. 2022.
XIONG, Y.; HUANG, S.; CHEN, F.; YE, H.; WANG, C.; ZHU, C. The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China. Remote Sensing, 4(7), p.2033-2056, 2012. Disponível em: https://doi.org/10.3390/rs4072033. Acesso em:16 mar. 2022.
ZHOU, D.; XIAO, J.; BONAFONI, S.; BERGER, C.; DEILAMI, K.; ZHOU, Y.; (...); SOBRINO, J. Satellite remote sensing of surface urban heat islands: progress, challenges, and perspectives. Remote Sensing, 11(1), 48, 36p., 2019. https://doi.org/10.3390/rs11010048. Acesso em: 23 abr. 2022.
Downloads
Published
How to Cite
Issue
Section
License
A aprovação dos artigos implica a aceitação imediata e sem ônus de que a Revista Brasileira de Climatologia terá exclusividade na primeira publicação do artigo. Os autores continuarão, não obstante, a deter os direitos autorais. Os autores autorizam também que seus artigos sejam disponibilizados em todos os indexadores aos quais a revista está vinculada.
Os autores mantém seus direitos de publicação sem restrições
A Comissão Editorial não se responsabiliza pelos conceitos ou afirmações expressos nos trabalhos publicados, que são de inteira responsabilidade dos autores.
A Revista Brasileira de Climatologia oferece acesso livre imediato ao seu conteúdo, seguindo o entendimento de que disponibilizar gratuitamente o conhecimento científico ao público proporciona maior democratização do conhecimento e tende a produzir maior impacto dos artigos publicados. Os artigos publicados na revista são disponibilizados segundo a Licença Creative Commons CC-BY-NC 4.0 (https://creativecommons.org/licenses/by-nc/4.0/). Segundo essa licença é permitido acessar, distribuir e reutilizar os artigos para fins não comerciais desde que citados os autores e a fonte. Ao submeter artigos à Revista Brasileira de Climatologia, os autores concordam em tornar seus textos legalmente disponíveis segundo essa licença