SPATIAL AND TEMPORAL VARIABILITY OF SURFACE TEMPERATURE, LAND USE AND LAND COVER CHANGE: A CASE STUDY IN CAMPINAS, BRAZIL

Authors

  • Luiza Marchezan Bezerra Fundação Getúlio Vargas Universidade Estadual do Centro-Oeste
  • Ana Maria Heuminski Avila

Abstract

The deteriorating climatic conditions in Brazilian urban centers is a real concern for human security and urban livelihood sustainability.  The city of Campinas in São Paulo, Brazil, is highly vulnerable to climatic disasters. This paper analyzes the relation between land use changes and temperature in Campinas between 1989 and 2016. The 28-year period was chosen due to the variability of climatic data in three meteorological stations (University of Campinas, Agronomic Institute of Campinas and International Airport of Viracopos). Data from five sources were used for analysis of land use and land changes (LULC), and of land surface temperature (LST). The data sources were: i) Landsat 5 Thermometer Mapper (TM), ii) Landsat 5 Thermal Infrared Sensor (TIRS), iii) Thermal Infrared Sensor (ETM +) sensors from Landsat 5, iv) Landsat 8 Operational Land Imager (OLI), and v) Thermal Infrared Sensor (TIRS). The results indicate consistent relations between urbanized increase area and the elevation of air and surface temperature in Campinas. In the studied period, there was an increase of 23% in urbanized areas and around the meteorological stations. The Center for Meteorological and Climatic Research Applied to Agriculture at the University of Campinas (CEPAGRI/UNICAMP) presented the highest growth measure, about 22%, as well as the station with the highest air temperature

Downloads

Download data is not yet available.

References

ANDRADE, A. C.; FRANCISCO, C. N.; ALMEIDA, C. M. Desempenho de Classificadores Paramétrico e não Paramétrico na classificação da fisionomia vegetal. Revista Brasileira de Cartografia, nº 66/2, p. 349-363, 2014.

ARNFIELD, J. A. Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, n. 23, p. 1-26, 2003

AZEVEDO, J. A.; CHAPMAN, L.; MULLER, C. L. Quantifying the Daytime and Night-Time Urban Heat Island in Birmingham, UK: A Comparison of Satellite Derived Land Surface Temperature and High Resolution Air Temperature Observations. Remote Sens. V. 8, n.153, 2016.

BLAIN, G. C. et al. Análises estatísticas das tendências de elevação nas series anuais de temperatura mínima do ar no estado de São Paulo. Bragantia, Campinas, v. 68, n. 3, p. 807- 815, 2009.

BLAIN, G. C. Precipitação pluvial e temperatura do ar no Estado de São Paulo: periodicidades, probabilidades associadas, tendências e variações climáticas. Piracicaba: Escola Superior de Agricultura “Luiz de Queiroz”, 2010, 194 p.

BECK, H. E.; ZIMMERMANN, N. E.; MCVICAR, T. R.; VERGOPOLAN, N.; BERG, A.; WOOD, E. F. Present and future köppen-geiger climate classification maps at 1-km resolution. Scientific Data, v. 5, p. 1-12, 2018

CAIADO, M. C. S.; PIRES, M. C. S. Campinas metropolitana: transformações na estrutura urbana atual e desafios futuros. In: CUNHA, J. M. P. da (Org.). Novas metrópoles paulistas: população, vulnerabilidade e segregação. Campinas: Nepo/Unicamp, 2006, p. 275-304.

CAMPINAS. Dados do munícipio e RMC. Disponível em <http://www.campinas.sp.gov.br/governo/seplama/dados-domunicipio/cidade/> Acesso em: 04 de junho de 2017, às 10h.

CAVALCANTI, I. F. A.; NUNES, L. H.; MARENGO, J. A.; GOMES, J. L.; SILVEIRA, V. P.; CASTELLANO, M. S. Projections of Precipitation Changes in Two Vulnerable Regions of Sao Paulo State, Brazil. American Journal of Climate Change, 6, p. 268-293, 2017.

CHEN, X. L.; ZHAO, H. M.; LI, P. X.; YIN, Z. Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104, p. 133-146, 2006.

DIAS, M. A. S., DIAS, J., CARVALHO, L. M. V., FREITAS, E. D.; DIAS, P. L. S. Changes in extreme daily rainfall for São Paulo, Brazil. Climatic Change. V. 116 n. 3, 705-722, 2013.

DUFEK, A. S.; AMBRIZZI, T. Variabilidade climática da temperatura no Estado de São Paulo. In: Congresso Brasileiro de Meteorologia, Florianópolis, 2006.

FU, P.; WENG, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sensing of Environment, 175, p. 205-214, 2016.

IBGE. Instituto Brasileiro de Geografia e Estatística – Campinas/SP. Available in <http://cidades.ibge.gov.br/painel/painel. php?codmun=350950> Accessed in: June, 6th, 2017.

IBGE. Manual Técnico do Uso da Terra. 3º edição, 2013. Available in < http://biblioteca.ibge.gov.br/visualizacao/livros/liv81615.pdf> Accessed in: July 8th, 2016.

INPE. Instituto Nacional de Pesquisas Espaciais. Available in < Catálogo de Imagens (inpe.br)> Accessed in: January 10th, 2015.

LO, C. P.; QUATTROCHI, D. A. Land-use and land-cover change, urban heat island phenomenon, and health implications: A remote sensing approach. Photogrammetric Engineering and Remote Sensing, 69 (9), p. 1053–1063, 2003.

OKE, T. R.; MILLO G.; CHRISTEN A.; VOOGHT J. A.; Urban climates. Cambridge University Press; 1st edition, 2017, 548p.

OKE, T. R. Boundary Layer Climates. London: Routledge, 1987, 435 p.

OLIVEIRA, T. H.; GALVÍNCIO, J. D.; PIMENTEL, R. M. M; DA SILVA, B. B. Uso e cobertura do solo e seus efeitos na distribuição da temperatura de superfície em área urbana. Revista Brasileira de Geografia Física, v.06, n.06, p. 1598-1616, 2013.

PEZZUTO, C. C. Avaliação do ambiente térmico nos espaços urbanos abertos. Estudo de caso em Campinas, SP. 2007. Campinas: Universidade Estadual de Campinas, 2007, 182 p.

RODRIGUES, M.; DUPAS, F. A.; REBOITA, M. S. Temperatura Aparente de Superfície na Bacia Hidrográfica do Rio Tavares, Florianópolis. Revista Brasileira de Climatologia, v. 21, p. 1-19, 2017.

USGS. United States Geological Survey. Available in <https://www.usgs.gov/products/multimedia-gallery/images> Assessed in: March, 25th, 2017.

VOOGT, J. A., OKE, T. R. Effects of urban surface geometry on remotely sensed surface temperature. International Journal of Remote Sensing, v. 19, n. 5, p. 895–920, 1998.

VOOGT, J. A., & OKE, T. R. Thermal remote sensing of urban climates. Remote Sensing of Environment, 86, 370–384, 2002.

WENG, Q. A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. International Journal Remote Sensing, 22, p.1999-2014, 2001.

WENG, Q.; LU, D.; SCHUBRING, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89, p.467-483, 2004.

YUAN, F.; BAUER, M. E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106, p.375-386, 2006.

ZHOU, W.; HUANG, G.; CADENASSO, M. L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and Urban Planning, 102, p. 54-63, 2011.

ZHU, Z.; WOODCOCK, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144, p. 152-171, 2014

Downloads

Published

28/04/2021

How to Cite

Bezerra, L. M., & Avila, A. M. H. (2021). SPATIAL AND TEMPORAL VARIABILITY OF SURFACE TEMPERATURE, LAND USE AND LAND COVER CHANGE: A CASE STUDY IN CAMPINAS, BRAZIL. Brazilian Journal of Climatology, 28, 494–506. Retrieved from https://ojs.ufgd.edu.br/rbclima/article/view/14626

Issue

Section

Artigos