Leaf anatomy of Conyza sumatrensis byotipes susceptible and resistant to glyphosate

Authors

DOI:

https://doi.org/10.30612/agrarian.v13i49.9536

Keywords:

Anatomic characterization. Horseweed. Vascular bundles. Epidermalthickness. Stomatal index.

Abstract

Conyza sumatrensis is a weed that have resistance to the herbicide glyphosate. Resistance may be involved with anatomical differences between biotypes resistant and susceptible to the herbicide. The objective of this work was to perform the anatomical description of the leaf of Conyza sumatrensis resistant and susceptible to the herbicide glyphosate, with a view to identify possible alterations that may alter the absorption and/or translocation of the herbicide. For this, leaves of the resistant biotypes and one susceptible to glyphosate were collected and fixed in FAA 70 and later fixed in ethanol 70. The determination of the thickness of the epidermis on the adaxial side of the leaves of the biotypes, diameter of the vascular bundles and density and stomatal index were performed. The histological analyzes were performed using an optical microscope, and photographs of at least four readings were taken on each slide. The results observed in the characterization of the adaxial epidermis and the diameter of the bundles not showed differences between resistant and susceptible biotypes. On the other hand, the susceptible biotype presents higher density and stomatal index when compared to the others, explaining the difference of susceptibility to the glyphosate herbicide among the materials.

Downloads

Download data is not yet available.

Author Biographies

Adriana Favaretto, Universidade de Passo Fundo (UPF)

Programa de Pós-graduação em Agronomia - Universidade de Passo Fundo

Mauro Antônio Rizzardi, Universidade de Passo Fundo (UPF)

Programa de Pós-graduação em Agronomia - Universidade de Passo Fundo

References

ADU-YEBOAH, P.; MALONE, J.M.; GILL, G.; PRESTON, C. Reduced glyphosate translocation in two glyphosate-resistant populations of rigid ryegrass (Lolium rigidum) from fence lines in South Australia. Weed Science, v.62, n. 1, p.4-10, 2014.

AGUIAR, T.V.; SANT’ANNA-SANTOS, B.F.; AZEVEDO, A.A.; FERREIRA, R.S. Anati Quanti: software de análises quantitativas para estudos em anatomia vegetal. Planta Daninha, v. 25, n. 4, p. 649-659, 2007.

APEZZATO-DA-GLÓRIA, B.; Carmello-Guerreiro, S.M. Anatomia vegetal. 1. Ed. Viçosa: Universidade Federal de Viçosa, 2003. 192p.

CARDINALI, V.C.B.; DIAS, A.C.R.; MUELLER, T.C.; ABERCROMBIE, L.; STEWARTJR, C.N.; TORNISIELO, V.L.; CHRISTOFFOLETI, P.J. Shikimate accumulation, glyphosate absortion and translocation in horseweed biotypes. Planta Daninha, v.33, n. 1, p.109-118, 2015.

CUTTER, E.G. Plant anatomy: cells and tissues. Part I. London: William Clowes and Sons, 1978. 315 p.

DUKE, S.O.; POWLES, S.B. Glyphosate: a once-in-a-century herbicide. Pest Management Science, v.64, n. 4, p.319-325, 2008.

FENG, P.C.; TRAN, M.; CHIU, T.; SAMMONS, R.D.; HECK, G.R.; CAJACOB, C.A. Investigation into glyphosate-resistant horseweed (Conyza canadensis): retention, uptake, translocation, and metabolism. Weed Science, v.52, n. 4, p.498-505, 2004.

FERREIRA, E.A.; SANTOS, J.B.; SILVA, A.A.; OLIVEIRA, J.A.; VARGAS, L. Translocação do glyphosate em biótipos de azevém (Lolium multiflorum). Planta Daninha, v.24, n. 2, p.365-370, 2006.

GE, X.; D’AVIGNON, D.A.; ACKERMAN, J.J.H.; SAMMONS, R.D. Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. Pest Management Science, v.66, n. 4, p.345-348, 2010.

GE, X.; D’AVIGNON, D.A.; ACKERMAN, J.J.H.; DUNCAN, B.; SPAUR, M.B.; SAMMONS, R.D. Glyphosate-resistant horseweed made sensitive to glyphosate: low-temperature suppression of glyphosate vacuolar sequestration revealed by 31P NMR. Pest Management Science, v.67, n. 10, p.1215-1221, 2011.

GE, X.; D’AVIGNON, D.A.; ACKERMAN, J.J.H.; SAMMONS, R.D. In Vivo 31P-Nuclear Magnetic Resonance Studies of Glyphosate Uptake, Vacuolar Sequestration, and Tonoplast Pump Activity in Glyphosate-Resistant Horseweed. Plant Physiology, v.166, n. 3, p.1255-1268, 2014.

GONZÁLES-TORRALVA, F.; ROJANO-DELGADO, A.M.; CASTRO, M.D.L.; MULLEDER, N.; DE PRADO, R. Two non-target site mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) biotypes. Journal of Plant Physiology, v.169, n. 17, p.1673-1679, 2012.

HANSJOERG; K.; BAUR, P. Weed Anatomy. Chichester: Wiley-Blackwell, 2013. 487 p.

HAO, J.H.; QIANG, S.; LIU, Q.Q.; CAO, F. Reproductive traits associated with invasiveness in Conyza sumatrensis. Journal of Systematics and Evolution, v.47, n. 3, p.245-254, 2009.

HETHERINGTON, P.R.; REYNOLDS, T.L.; MARSHALL, G.; KIRKWOOD, R.C. The absortion translocation and distribution of the herbicide glyphosate in maize expressing the CP-4 transgene. Journal of Experimental Botany, v.50, n. 339, p.1567-1576, 1999.

HEAP, I. Internacional survey of herbicide resistant weeds. Disponível em: www.weedscience.org. Acesso em: 20 fev 2019.

HESS, F.D.; FALK, R.H. Spontaneous lysosomal storage disease caused by Sida carpinifolia (Malvaceae) poisoning in cattle. Weed Science., v. 38, n. 3, p. 280-288, 1990.

KOGER, C.H.; REDDY, K.N. Role of absortion and translocation in the mechanism of glyphosate resistance in horseweed (Conyza canadensis). Weed Science, v.53, n. 1, p.84-89, 2005.

KRAEHMER, H.; BAUR, P. Weed anatomy. Frankfurt, Germany: British Library, 2013.

KING, M.G.; RADOSEVICH, S.R. Tanoak (Lithocarpus densiflorus) leaf surface characteristics and absorption of triclopyr. Weed

Science., v. 27, p. 599-604, 1979.

PROCÓPIO, S.O.; FERREIRA, E.A.; SILVA, E.A.M.; SILVA, A.A.; RUFINO, R.J.N. Estudos anatômicos de folhas de espécies de plantas daninhas de grande ocorrência no Brasil. v – Leonurus sibiricus, Leonotis nepetaefolia, Plantago tomentosa e Sida glaziovii. Planta Daninha, v. 21, n. 3, p. 403-411, 2003.

PRUSKI, J.F.; SANCHO, G. Conyza sumatrensis var. leiotheca (Compositae: Asteraceae), a new combination for a common neotropical weed. Novon, v.16, n. 1, p.96-101, 2006.

SAMMONS, R.D.; GAINE, T.A. Glyphosate resistance: State of knowledge. Pest Management Science, v.70, n. 9, p.1367-1377, 2014.

SANTOS, F.M.; VARGAS, L.; CHRISTOFFOLETI, P.J.; AGOSTINETTO, D.; MARTIN, T.N.; RUCHEL, Q.; FERNANDO, J.A. Estádio de desenvolvimento e superfície foliar reduzem a eficiência de chlorimuron-ethyl e glyphosate em Conyza sumatrensis. Planta Daninha, v.32, n. 2, p.361-375, 2014.

SARGENT, J.A.; BLACKMAN, G.E. Studies on foliar penetration. I. Factors controlling the entry of 2,4- dicloroacetic acid. Journal of Experimental Botany, v. 13, p. 348-368, 1962.

SATICHIVI, N.M.; WAX, L.M.; STOLLER, E.W.; BRISKIN, D.P. Absortion and translocation of glyphosate isopropylamine and trimethylsulfonium salts in Abutilon theophrasti and Setaria faberi. Weed Science, v.48, n. 6, p.675-679, 2000.

THEBAUD, C.; ABBOTT, R.J. Characterization of invasive Conyza species (Asteraceae) in Europe: quantitative trait and isozyme analysis. American Journal of Botany, v.82, n. 3, p.360-368, 1995.

TUFFI SANTOS, L.D. et al. Características da epiderme foliar de eucalipto e seu envolvimento com a tolerância ao glyphosate. Planta Daninha, v. 24, n. 3, p. 503-520, 2006.

VELINI, E.D.; MESCHEDE, D.K.; CARBONARI, C.A.; TRINDADE, M.L.B. Glyphosate. Botucatu: FEPAF, 2009. 493p.

WYRILL, J.B.; BURNSIDE, O.C. Absorption, translocation and metabolism of 2,4-D and glyphosate in commom milkweed and hemp dogbane. Weed Science., v. 24, n. 6, p. 557-566, 1976.

Published

2020-07-27

How to Cite

Schneider, T., Favaretto, A., & Rizzardi, M. A. (2020). Leaf anatomy of Conyza sumatrensis byotipes susceptible and resistant to glyphosate. Agrarian Journal, 13(49), 330–338. https://doi.org/10.30612/agrarian.v13i49.9536

Issue

Section

Article - Plant Breeding