Desenvolvimento de funções para automação dos processos de previsões meteorológicas de curto prazo utilizando dados do GEFS

Autores

DOI:

https://doi.org/10.55761/abclima.v36i21.19002

Palavras-chave:

Processamento de dados, Análise de dados, Modelos, Previsão do tempo

Resumo

Este estudo explora o papel da automação na melhoria das previsões meteorológicas de curto prazo, com ênfase no uso do modelo Global Ensemble Forecast System (GEFS), reconhecendo a importância das previsões do tempo para diversos setores da sociedade. A automação é investigada como um meio para aumentar a precisão e eficiência na análise e processamento de dados meteorológicos. Isso inclui a geração de gráficos para variáveis essenciais (temperatura, umidade, vento e precipitação) e a capacidade de enviar essas informações por e-mail de forma automática. Como exemplo prático, foram selecionadas 6 cidades do Rio Grande do Sul, onde o Centro de Pesquisas e Previsões Meteorológicas (CPPMET) realiza previsões rotineiramente. A implementação dessas inovações demonstrou potencial para auxiliar o CPPMET na otimização de tempo nas tarefas diárias, evidenciando a eficácia da automação em melhorar o processo de previsão meteorológica.

Downloads

Não há dados estatísticos.

Biografia do Autor

Bruno Coelho Bulcão, Universidade Federal de Pelotas

Possui Graduação em Física Licenciatura pela Universidade do Estado do Amazonas (UEA) e Mestrado em Meteorologia pela Universidade Federal de Pelotas (UFPel). Possui habilidades em linguagens de programação como R, Matlab e C++, e tem experiência no desenvolvimento de aplicativos com Flutter.

Douglas da Silva Lindemann, Universidade Federal de Pelotas

Possui graduação em Meteorologia (2009) pela Universidade Federal de Pelotas (UFPEL), Mestrado em Meteorologia Agrícola (2012) pela Universidade Federal de Viçosa (UFV) e Doutorado em Meteorologia Aplicada pela UFV (2016). Atualmente é Professor na Faculdade de Meteorologia da UFPEL (FAMET/UFPEL) e Chefe do Departamento de Meteorologia da FAMET. É coordenador adjunto e faz parte do corpo docente permanente do Programa de Pós-Graduação (PPG) em Meteorologia e do PPG em Modelagem Matemática da UFPEL. É coordenador do Grupo de Interação Oceano-Atmosfera e Climatologia (GOAC) na FAMET/UFPEL. Tem experiência na área de Geociências, com ênfase em Meteorologia, atuando principalmente nos seguintes temas: Climatologia, Modelagem, Mudanças Climáticas, Criosfera e Interação Oceano-Atmosfera.

Raquel Machado Machado, Universidade Federal de Pelotas

Possui Graduação em Meteorologia pela Universidade Federal de Pelotas (UFPEL) (2024) e atualmente é mestranda em Meteorologia pela UFPEL. Atua na área de Geociências, com ênfase em Meteorologia, operando principalmente na área de Interação Oceano-Atmosfera. Integrante do Grupo de Interação Oceano-Atmosfera e Climatologia (GOAC - UFPEL) e do Núcleo de Estudos sobre Variabilidade e Mudanças Climáticas (NUVEM - UFPR).

Luciana Barros Pinto, Universidade Federal de Pelotas

Possui graduação em Meteorologia pela Universidade Federal de Pelotas (2004), mestrado em Meteorologia pela Universidade Federal de Pelotas (2006) e Doutorado em Meteorologia Agrícola pela Universidade Federal de Viçosa (UFV) (2012). Atualmente é Professora Associada com Dedicação Exclusiva da Faculdade de Meteorologia da Universidade Federal de Pelotas, com pesquisas voltadas para as áreas de Interação Atmosfera-Biosfera e Agrometeorologia.

Referências

AGGARWAL, R.; KUMAR, R. A Comprehensive Review of Numerical Weather Prediction Models. International Journal of Computer Applications, v. 74, n. 18, 2013. DOI: http://dx.doi.org/10.5120/12989-0246. DOI: https://doi.org/10.5120/12989-0246

BIVAND, R. Rdocumentation: rgdal (version 1.6-7). (2023). Disponível em: https://www.rdocumentation.org/packages/rgdal/versions/1.6-7. Acesso em: 15 abr. 2024.

CRISTANI, M. et al. “It Could Be Worse, It Could Be Raining”: Reliable Automatic Meteorological Forecasting for Holiday Planning. In: WOTAWA, F. et al. (ed.). Advances and Trends in Artificial Intelligence: From Theory to Practice. Cham: Springer, 2019. (Lecture Notes in Artificial Intelligence, v. 11569). Disponível em: https://link.springer.com/chapter/10.1007/978-3-030-22999-3_1. Acesso em: 15 abr. 2024. DOI: https://doi.org/10.1007/978-3-030-22999-3_1

CURSO-R. O pacote dplyr: Ciências de Dados em R. Disponível em: https://livro.curso-r.com/7-2-dplyr.html. Acesso em: 15 abr. 2024a.

CURSO-R. O pacote ggplot2: Ciência de Dados em R. Disponível em: https://livro.curso-r.com/8-1-o-pacote-ggplot2.html. Acesso em: 15 de abr. 2024b.

DU, J.; DENG, G. How Should a Numerical Weather Prediction Be Used: Full Field or Anomaly? A Conceptual Demonstration with a Lorenz Model. Atmosphere, v. 13, n. 9, 2022. DOI: https://doi.org/10.3390/atmos13091487. DOI: https://doi.org/10.3390/atmos13091487

HARRISON, L. et al. Advancing early warning capabilities with CHIRPS-compatible NCEP GEFS precipitation forecasts. Nature, v. 9, 2022. DOI: https://doi.org/10.1038/s41597-022-01468-2 DOI: https://doi.org/10.1038/s41597-022-01468-2

HASAN, N.; UDDIN, M. T.; CHOWDHURY, N. K. Automated weather event analysis with machine learning. In: INTERNATIONAL CONFERENCE ON INNOVATIONS IN SCIENCE, ENGINEERING AND TECHNOLOGY - ICISET, Dhaka. Anais… [S.I: s.n.], 2016. p. 1-5. DOI: https://doi.org/10.1109/ICISET.2016.7856509

HIJMANS, R. J. et al. Geographic Data Analysis and Modeling: Package ‘raster’. 2023. Disponível em: https://cran.r-project.org/web/packages/raster/raster.pdf. Acesso em: 15 abr. 2024.

HILL, A. J.; SCHUMACHER, R. S.; JIRAK, I. L. A New Paradigm for Medium-Range Severe Weather Forecasts: Probabilistic Random Forest–Based Predictions. Weather and Forecasting, v. 38, n. 2, p. 251–272, 2023. DOI: https://doi.org/10.1175/WAF-D-22-0143.1. DOI: https://doi.org/10.1175/WAF-D-22-0143.1

HUNT, J. C. R. Meteorology in society and practical developments. Quarterly Journal of the Royal Meteorological Society, v. 139, p. 561-572, 2013. DOI: https://doi.org/10.1002/qj.1993. DOI: https://doi.org/10.1002/qj.1993

LYNCH, P. The origins of computer weather prediction and climate modeling. Journal of Computational Physics, v. 227, p. 3431-3444, 2008. DOI: https://doi.org/10.1016/j.jcp.2007.02.034. DOI: https://doi.org/10.1016/j.jcp.2007.02.034

MEDINA, H. et al. Comparing GEFS, ECMWF, and Postprocessing Methods for Ensemble Precipitation Forecasts over Brazil. Journal of Hydrometeorology, v. 20, p. 773–790, 2019. DOI: https://doi.org/10.1175/JHM-D-18-0125.1. DOI: https://doi.org/10.1175/JHM-D-18-0125.1

NNENNA, U. C.; JAMES, E.; EDITH, E. O. Modelling an automated rainfall forecasting system using an optimized intelligent agent. Global Journal of Engineering and Technology Advances, v. 15, p. 64-69, 2023. DOI: https://doi.org/10.30574/gjeta.2023.15.1.0077. DOI: https://doi.org/10.30574/gjeta.2023.15.1.0077

PEBESMA, E. et al. Package ‘sp’: Classes and Methods for Spatial Data. Disponível em: https://cran.r-project.org/web/packages/sp/sp.pdf. Acesso em: 15 abr. 2024.

PREMRAJ, R. Package ‘mailR’: A Utility to Send Emails from R. 2022. Disponível em: https://cran.r-project.org/web/packages/mailR/mailR.pdf. Acesso em: 15 abr. 2024.

R FOUNDATION. The curl package: a modern R interface to libcurl. 2024. Disponível em: https://cran.r-project.org/web/packages/curl/vignettes/intro.html. Acesso em: 15 abr. 2024.

SAUR, D. Evaluation of the Accuracy of Numerical Weather Prediction Models. In: SILHAVY, R. et al. (ed). Artificial Intelligence Perspectives and Applications. Cham: Springer, 2015. (Advances in Intelligent Systems and Computing, v. 347). DOI: https://doi.org/10.1007/978-3-319-18476-0_19

SCHAUBERGER, P. et al. Package ‘openxlsx’: Read, Write and Edit xlsx Files. Disponível em: https://cran.r-project.org/web/packages/openxlsx/openxlsx.pdf. Acesso em: 15 abr. 2024.

SIMMONS, A. J.; HOLLINGSWORTH, A. Some aspects of the improvement in skill of numerical weather prediction. Quarterly Journal of the Royal Meteorological Society, v. 128, p. 647-677, 2002b. DOI: https://doi.org/10.1256/003590002321042135. DOI: https://doi.org/10.1256/003590002321042135

TAMAMADIN, M. et al. Automation Process to Support an Information System on Extreme Weather Warning. IOP Conference Series: Materials Science and Engineering, Indonesia, v. 803, 2020. DOI: https://doi.org/10.1088/1757-899X/803/1/012044

VAUGHAN, C.; DESSAI, S. Climate services for society: origins, institutional arrangements, and design elements for an evaluation framework. WIREs Climate Change, v. 5, p. 587-603, 2014. DOI: https://doi.org/10.1002/wcc.290. DOI: https://doi.org/10.1002/wcc.290

WALLER, J. A.; DANCE, S. L.; LEAN, H. W. Evaluating errors due to unresolved scales in convection-permitting numerical weather prediction. Quarterly Journal of the Royal Meteorological Society, v. 147, p. 2657-2669, 2021. DOI: https://doi.org/10.1002/qj.4043. DOI: https://doi.org/10.1002/qj.4043

YANG, H. et al. Statistical downscaling of numerical weather prediction based on convolutional neural networks. Global Energy Interconnection, v. 5, p. 217-225, 2022. DOI: https://doi.org/10.1016/j.gloei.2022.04.018. DOI: https://doi.org/10.1016/j.gloei.2022.04.018

ZHANG, F.; ROUTRAY, A. Data Assimilation: Comparison and Hybridization between Ensemble and Variational Methods. In: MOHANTY, U.C.; GOPALAKRISHNAN, S.G. (ed). Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction. Springer, Dordrecht, 2016. DOI: https://doi.org/10.5822/978-94-024-0896-6_13

ZHOU, X. et al. The Development of the NCEP Global Ensemble Forecast System Version 12. Weather and Forecasting, v. 37, p. 1069-1084, 2022. DOI: https://doi.org/10.1175/WAF-D-21-0112.1. DOI: https://doi.org/10.1175/WAF-D-21-0112.1

ZHOU, X. et al. Performance of the New NCEP Global Ensemble Forecast System in a Parallel Experiment. Weather and Forecasting, v. 32, p. 1989-2004, 2017. DOI: https://doi.org/10.1175/WAF-D-17-0023.1. DOI: https://doi.org/10.1175/WAF-D-17-0023.1

ZHU, Y. et al. Quantify the Coupled GEFS Forecast Uncertainty for the Weather and Subseasonal Prediction. Journal of Geophysical Research: Atmospheres, v. 128, 2023. DOI: https://doi.org/10.1029/2022JD037757. DOI: https://doi.org/10.1029/2022JD037757

Downloads

Publicado

23-04-2025

Como Citar

Bulcão, B. C., Lindemann, D. da S., Machado, R. M., & Pinto, L. B. (2025). Desenvolvimento de funções para automação dos processos de previsões meteorológicas de curto prazo utilizando dados do GEFS. Revista Brasileira De Climatologia, 36(21), 507–532. https://doi.org/10.55761/abclima.v36i21.19002

Edição

Seção

Artigos