Analysis of the historical series of monthly precipitation in the Camaquã Hydrographic Basin, Brazil, based on observed and high-resolution numerical data
DOI:
https://doi.org/10.55761/abclima.v37i21.19261Palavras-chave:
ERA5. Precipitation Trends. Water Resources.Resumo
This study broaches the analysis of historical precipitation series in the Camaquã Hydrographic Basin (CHB), located in Rio Grande do Sul State, Brazil. The relevance of climate monitoring, especially in understanding variations in precipitation that impact local economic activities, such as agriculture and livestock, is highlighted. The main objective is to identify and fill gaps in historical precipitation data, using statistical methods such as multiple linear regression, and verify precipitation trends over 40 years (1981-2020). This work also correlates historical data with the ERA5 reanalysis, aiming to evaluate the accuracy of this model. The results show a reasonably homogeneous mean distribution across the months, with spring showing slightly higher values. The historical series showed no significant trends. It was observed that ERA5 strongly correlates with the observed data, although it tends to overestimate precipitation, particularly in the warmer.
Downloads
Referências
APARECIDO, L. E. O.; ROLIM, G. S.; MORAES, J. R. S. C. Validation of ECMWF climatic data, 1979-2017, and implications for modelling water balance for tropical climates. International Journal of Climatology, v. 40, n. 15, p. 1- 20, 2020. DOI: https://doi.org/10.1002/joc.6604
ARRUDA, A. M. D.; CENTENO, L. N.; NUNES, A. B. Relation Between Major Climatic Indices and Subseasonal Precipitation in Rio Grande do Sul State, Brazil. Meteorology, v. 4, n. 5, 2025. Available at: https://doi.org/10.3390/meteorology4010005. Accessed on: Sep. 10. 2025. DOI: https://doi.org/10.3390/meteorology4010005
BARBOSA, S. E. S. et al. Generation of regionalization models of maximum, long-term average, and seven-day minimum flows for the Carmo River Basin, Minas Gerais. Engenharia Sanitária e Ambiental, v. 10, p. 64-71, 2005. DOI: https://doi.org/10.1590/S1413-41522005000100008
BARROS, V. S. et al. Trend analysis of the standardized precipitation index in Recife–PE. Research, Society and Development, v. 10, n. 8, p. e52310817458-e52310817458, 2021. DOI: https://doi.org/10.33448/rsd-v10i8.17458
BERTONI, J. C.; TUCCI, C. E. M. Precipitation. In: TUCCI, C. E. M. Hydrology Science and Application. 4th ed. 9th imp., Porto Alegre: Ufrgs, 2020. Chap. 5. p.177-241.
BRUBACHER, J. P. et al. Gap filling in daily precipitation time series in Rio Grande do Sul. Revista Brasileira de Meteorologia, v. 35, p. 335-344, 2020. DOI: https://doi.org/10.1590/0102-7786352035
CARDOSO, I. P. et al. Validation of precipitation data generated by ERA5 reanalysis for the Mirim-São Gonçalo watershed, Brazil. Revista Brasileira de Geografia Física, [S. l.], v. 17, n. 2, p. 824–837, 2024. DOI: 10.26848/rbgf.v17.2.p824-837. Available at: https://periodicos.ufpe.br/revistas/index.php/rbgfe/article/view/259340. Accessed on: Abr. 8. 2024. DOI: https://doi.org/10.26848/rbgf.v17.2.p824-837
CAVALCANTI, I. F. A. Weather and climate in Brazil. Text workshop, 2016.
COLLISCHONN, W.; DORNELES, F. Hydrology for engineering and environmental sciences. 2a ed. Porto Alegre: ABRH, p. 210, 2013.
COPERNICUS CLIMATE CHANGE SERVICE (C3S). 2024. ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). Available at: https://climate.copernicus.eu/climate-reanalysis. Accessed on: Jul. 16. 2024.
COUTINHO, E. R. et al. Application of artificial neural networks (ANNs) in the gap filling of meteorological time series. Revista Brasileira de Meteorologia, v. 33, n. 2, p. 317-328, 2018. DOI: https://doi.org/10.1590/0102-7786332013
CUNHA JÚNIOR, R. O; FIRMINO, P. R. A. Simulation of missing values in precipitation time series for evaluation of imputation methods. Revista Brasileira de Climatologia, v. 30, n. 18, p. 691–714, 2022.
DIAZ, C. C. F.; PEREIRA, J. A. S.; NÓBREGA, R. S. Comparison of data estimated by two different methods for filling rainfall gaps in the Pajeú River basin, Pernambuco, Brazil. Revista Brasileira de Climatologia, v. 22, p. 324-339, 2018.
FERREIRA, G.W.S.; REBOITA, M.S.A. New Look into the South America Precipitation Regimes: Observation and Forecast. Atmosphere, v.13, n.6, 2022. DOI: https://doi.org/10.3390/atmos13060873
FREITAS, I. G. F. de; et al. Assessment of wind speed using hindcast developed by Climatempo for the application of wind resources in Brazil. In: BRAZIL WINDPOWER, 2023. Proceedings [...]. [S.l.: s.n.], 2023. Available at: https://abeeolica.org.br/wp-content/uploads/2023/11/1.3AP_1690574718-Avaliacao-da-Velocidade-do-Vento-Utilizando-Hindcast-Desenvolvido-pela-Climatempo-para-a-Aplicacao-dos-Recursos-Eolicos-no-Brasil.pdf. Accessed on: June 20. 2024.
GONÇALVES, F. N.; BACK, A. J. Analysis of spatial and seasonal variation and trends in precipitation in the Southern region of Brazil. Revista de Ciências Agrárias, vol. 41, no. 3, pp. 592-602, 2018. Available at: https://doi.org/10.19084/RCA17204. Accessed on: June 20. 2024. DOI: https://doi.org/10.19084/RCA17204
GRIMM, A.M.; FERRAZ, S.E.T.; GOMES, J. Precipitation Anomalies in Southern Brazil Associated with El Niño and La Niña Events. Journal of Climate, v. 11, p. 2863–2880, 1998. DOI: https://doi.org/10.1175/1520-0442(1998)011<2863:PAISBA>2.0.CO;2
HAIDEN, T. et al. Use of in situ surface observations at ECMWF. Reading, UK: European Centre for Medium Range Weather Forecasts, 2018.
HERSBACH, H. et al. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, v. 146, p. 1999–2049, 2020. Available at:
https://doi.org/10.55761/abclima.v30i18.15243. Accessed on: Jul. 16. 2024. DOI: https://doi.org/10.55761/abclima.v30i18.15243
INMET. Ministry of Agriculture and Livestock. National Institute of Meteorology. Climatological Normals. [2024]. Available at: https://portal.inmet.gov.br/servicos/normais-climatol%C3%B3gicas. Accessed on: Feb. 02. 2024.
JIANG, C. et al. Evaluation of precipitation reanalysis products for regional hydrological modelling in the Yellow River Basin. Theoretical and Applied Climatology, v. 155, n. 4, p. 2605-2626, 2024. DOI: https://doi.org/10.1007/s00704-023-04758-w
KENDALL, M. G. Rank Correlation Methods. Griffin. London. 1975.
LAVERS, D. A. et al. An evaluation of ERA5 precipitation for climate monitoring. Quarterly Journal of the Royal Meteorological Society, v. 148, n. 748, p. 3152-3165, 2022. DOI: https://doi.org/10.1002/qj.4351
MANN, H. B. Nonparametric tests against trend. Econometrica. Chicago, v. 13, n. 3, p. 245-259, 1945. DOI: https://doi.org/10.2307/1907187
MENDONÇA, F.; DANNI-OLIVEIRA, I. M. Climatology: basic concepts and climates of Brazil. Oficina de Textos, 2017.
MUKAKA, M. M. Statistics Corner: A guide to appropriate use of Correlation coeficiente in medical research. Malawi Medical Journal, v. 24, n. 3, p. 69-71, 2012.
NOGUEIRA, N. C. de O., MACHADO, P. H. G., REBOITA, M. S. Climatological Study of Cold Fronts active in Southern Rio Grande do Sul and Southern Minas Gerais between 2009 and 2021. Revista Brasileira de Climatologia, vol. 34, no. 20, pp. 306–334, 2024. DOI: https://doi.org/10.55761/abclima.v34i20.16664
OLIVEIRA, L. F. C. et al. Comparison of methodologies for gap-filling in historical time series of annual precipitation. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 14, no. 11, pp. 1186-1192, 2010. DOI: https://doi.org/10.1590/S1415-43662010001100008
OLIVEIRA, T. A.; SANCHES, F. de O.; FERREIRA, C. de C. M. Application and evaluation of techniques for gap-filling of rainfall data in typical, dry, and rainy years. Revista Entre-Lugar, vol. 12, no. 24, pp. 301–320, 2021. DOI: 10.30612/rel.v12i24.15137. Available at: https://ojs.ufgd.edu.br/index.php/entre-lugar/article/view/15137. Accessed on: Mar. 10. 2024. DOI: https://doi.org/10.30612/rel.v12i24.15137
PIERSANTE, J. O. et al. A synoptic evolution comparison of the smallest and largest MCSs in subtropical South America between spring and summer. Monthly Weather Review, v. 149, n. 6, p. 1943-1966, 2021. DOI: https://doi.org/10.1175/MWR-D-20-0208.1
REBOITA, M. S.; et al. Impacts of teleconnection patterns on South America climate. Annals of the New York Academy of Sciences, v. 1504, n. 1, p. 116-153, 2021. DOI: https://doi.org/10.1111/nyas.14592
RODRIGUES, A. A. et al. Rainfall trend and variability in Rio Grande do Sul, Brazil. Revista Brasileira de Climatologia, v. 32, 2023. Available at: https://doi.org/10.55761/abclima.v32i19.16179. Acessed on: Jun. 19. 2024. DOI: https://doi.org/10.55761/abclima.v32i19.16179
ROSA, A (Ed.); SILVA, C. S. da (Ed.); SILVA, J. A. O. da (Ed.). Camaquã river basin plan 2015/2035. Porto Alegre: SEMA, 2016. Available at: https://drive.google.com/file/d/0Byn_B-4Lg7RGQXN4SldKRVM1VVk/view. Accessed on: Mar. 10. 2024.
ROSSATO, M. S. The climates of Rio Grande do Sul: a proposal for climatic classification. Revista Entre-Lugar, vol. 11, no. 22, pp. 57-85, 2020. DOI: https://doi.org/10.30612/el.v11i22.12781
SALES, E. S. G.; et al. Relationship between NDVI and EVI with climatic indices in Northeast Brazil. Geoambiente On-line, no. 47, pp. 394-422, 2023. Available at: https://www.researchgate.net/publication/376597127_RELACAO_DO_NDVI_E_EVI_COM_OS_INDICES_CLIMATICOS_DO_NORDESTE_DO_BRASIL. Accessed on: Sep. 12. 2025.
SANCHES, F. O.; VERDUM, R.; FISCH, G. Long-term trend of daily rainfall in Southwestern Rio Grande do Sul: extreme events and arenization. Revista Brasileira de Geografia Física, Recife, vol. 7, no. 6, pp. 1100-1109, 2014. DOI: https://doi.org/10.5935/1984-2295.20140012
SANTOS, F. A., et al. Long-term variability and trend analysis of the rainfall distribution in the state of Bahia, Northeast Brazil. Theoretical and Applied Climatology, v. 148, n. 3-4, p. 1423-1433, 2022. Available at: https://doi.org/10.1007/s00704-021-03838-4. Acessed on: Mar. 12. 2024.
SARKAR, D. et al. Compiling non-parametric tests along with CA-ANN model for precipitation trends and variability analysis: A case study of Eastern India. Water Cycle, v. 2, p. 71-84, 2021. DOI: https://doi.org/10.1016/j.watcyc.2021.11.002
SCAGLIONI, T. P. et al. Climatic oscillations and the relationship with extreme precipitation events in the Camaquã river basin/RS. Revista Brasileira de Climatologia, vol. 33, pp. 260-277, 2023. DOI: https://doi.org/10.55761/abclima.v33i19.16649
SCAGLIONI, T. P.; FERNANDES, R. K. U.; NUNES, A. B. Extreme events of precipitation excess and deficit in the Camaquã River Basin from 1991-2020. Conjecturas, vol. 22, no. 2, pp. 672-686, 2022. DOI: https://doi.org/10.53660/CONJ-565-A21
SEN, P. K. Estimates of the regression coeficiente based on Kendall’s Tau. Journal of the American Statistical Association, v. 63, p. 1379-1389, 1968. DOI: https://doi.org/10.1080/01621459.1968.10480934
SILVA, M. V.; CAMPOS, C. R. J. Decadal anomalies of the hydrological regime of RS from 1977 to 2006. Ciência e Natura, UFSM, vol. 22, no. 1, pp. 75-89, 2011.
TANG, G.; et al. Em-Earth: The Ensemble Meteorological Dataset for Planet Earth. Bulletin of the American Meteorological Society, v. 103, n.4, p. E996–E1018, 2022. DOI: https://doi.org/10.1175/BAMS-D-21-0106.1
WMO. Guide to climatological practices. Geneva: World Meteorological Organization, 2018.
Publicado
Como Citar
Edição
Seção
Licença
A aprovação dos artigos implica a aceitação imediata e sem ônus de que a Revista Brasileira de Climatologia terá exclusividade na primeira publicação do artigo. Os autores continuarão, não obstante, a deter os direitos autorais. Os autores autorizam também que seus artigos sejam disponibilizados em todos os indexadores aos quais a revista está vinculada.
Os autores mantém seus direitos de publicação sem restrições
A Comissão Editorial não se responsabiliza pelos conceitos ou afirmações expressos nos trabalhos publicados, que são de inteira responsabilidade dos autores.
A Revista Brasileira de Climatologia oferece acesso livre imediato ao seu conteúdo, seguindo o entendimento de que disponibilizar gratuitamente o conhecimento científico ao público proporciona maior democratização do conhecimento e tende a produzir maior impacto dos artigos publicados. Os artigos publicados na revista são disponibilizados segundo a Licença Creative Commons CC-BY-NC 4.0 (https://creativecommons.org/licenses/by-nc/4.0/). Segundo essa licença é permitido acessar, distribuir e reutilizar os artigos para fins não comerciais desde que citados os autores e a fonte. Ao submeter artigos à Revista Brasileira de Climatologia, os autores concordam em tornar seus textos legalmente disponíveis segundo essa licença

