Analysis of the historical series of monthly precipitation in the Camaquã Hydrographic Basin, Brazil, based on observed and high-resolution numerical data

Autores

DOI:

https://doi.org/10.55761/abclima.v37i21.19261

Palavras-chave:

ERA5. Precipitation Trends. Water Resources.

Resumo

This study broaches the analysis of historical precipitation series in the Camaquã Hydrographic Basin (CHB), located in Rio Grande do Sul State, Brazil. The relevance of climate monitoring, especially in understanding variations in precipitation that impact local economic activities, such as agriculture and livestock, is highlighted. The main objective is to identify and fill gaps in historical precipitation data, using statistical methods such as multiple linear regression, and verify precipitation trends over 40 years (1981-2020). This work also correlates historical data with the ERA5 reanalysis, aiming to evaluate the accuracy of this model. The results show a reasonably homogeneous mean distribution across the months, with spring showing slightly higher values. The historical series showed no significant trends. It was observed that ERA5 strongly correlates with the observed data, although it tends to overestimate precipitation, particularly in the warmer.

Downloads

Não há dados estatísticos.

Biografia do Autor

Taís Pegoraro Scaglioni, Graduate Program in Water Resources, Federal University of Pelotas (UFPel); Tapes Unit, State University of Rio Grande do Sul (UERGS);

Possui graduação em Meteorologia pela Universidade Federal de Pelotas (2003), mestrado em Meteorologia pela Universidade Federal de Pelotas (2006) e doutorado em Recursos Hídricos pela UFPel (2025). Desde 2011 é professora da Universidade Estadual do Rio Grande do Sul (UERGS) - Unidade em Tapes, atuando em disciplinas na área da ciências exatas para os cursos de Graduação em Gestão Ambiental e Administração, atualmente está na coordenação do Curso de Graduação em Administração. Na pesquisa tem interesse em assuntos que envolvam eventos extremos, oscilações climáticas e fluxos de umidade.

Mateus Menezes Straceione , Undergraduate Student in Business Administration, Tapes Unit; State University of Rio Grande do Sul (UERGS);

Possui graduação em Bacharelado em Gestão Ambiental pela Universidade Estadual do Rio Grande do Sul (concluída em 2019) e Especialização em Educação Socioambiental pela Uergs ( concluída em 2021). Atualmente, cursando graduação em Administração na Universidade Estadual do Rio Grande do Sul. Experiência está centrada principalmente em áreas agrícolas e geociências, destacando-se em temas como gestão ambiental, educação agrícola, corredores ecológicos, comunidades Mbya Guarani, hortas comunitárias e terras indígenas.

André Becker Nunes , School of Meteorology, Federal University of Pelotas (UFPel);

Graduação em Meteorologia pela Universidade Federal de Pelotas (UFPEL) (2000), Mestrado em Meteorologia pela UFPEL (2002) na área de física da camada limite planetária e Doutorado em Meteorologia pelo Instituto Nacional de Pesquisas Espaciais (2008) na área de modelagem em micrometeorologia. Participação no Grupo de Mudanças Climáticas do CCST-INPE entre 2008 e 2009. Professor de ensino superior da Faculdade de Meteorologia da UFPEL desde novembro de 2009. Membro do Programa de Pós-Graduação em Meteorologia (PPGMET) e do Programa de Pós-Graduação em Recursos Hídricos (PPGRH). Orientações de doutorado, mestrado e iniciação científica nas áreas de climatologia, mudanças climáticas, meteorologia sinótica, agrometeorologia e micrometeorologia. Co-orientações no Programa de Pós-Graduação em Agronomia (UFPEL), no Programa de Pós-Graduação em Sensoriamento Remoto (UFRGS) e Programa de Pós-Graduação em Meteorologia (UFSM). Chefe do Departamento de Meteorologia da UFPel (2010-2014). Tutor do Grupo PET-Meteorologia (2016-2021). Professor Associado do Departamento de Meteorologia da UFPEL. Coordenador do Programa de Pós-Graduação em Recursos Hídricos da UFPEL (2022-2024).

Referências

APARECIDO, L. E. O.; ROLIM, G. S.; MORAES, J. R. S. C. Validation of ECMWF climatic data, 1979-2017, and implications for modelling water balance for tropical climates. International Journal of Climatology, v. 40, n. 15, p. 1- 20, 2020. DOI: https://doi.org/10.1002/joc.6604

ARRUDA, A. M. D.; CENTENO, L. N.; NUNES, A. B. Relation Between Major Climatic Indices and Subseasonal Precipitation in Rio Grande do Sul State, Brazil. Meteorology, v. 4, n. 5, 2025. Available at: https://doi.org/10.3390/meteorology4010005. Accessed on: Sep. 10. 2025. DOI: https://doi.org/10.3390/meteorology4010005

BARBOSA, S. E. S. et al. Generation of regionalization models of maximum, long-term average, and seven-day minimum flows for the Carmo River Basin, Minas Gerais. Engenharia Sanitária e Ambiental, v. 10, p. 64-71, 2005. DOI: https://doi.org/10.1590/S1413-41522005000100008

BARROS, V. S. et al. Trend analysis of the standardized precipitation index in Recife–PE. Research, Society and Development, v. 10, n. 8, p. e52310817458-e52310817458, 2021. DOI: https://doi.org/10.33448/rsd-v10i8.17458

BERTONI, J. C.; TUCCI, C. E. M. Precipitation. In: TUCCI, C. E. M. Hydrology Science and Application. 4th ed. 9th imp., Porto Alegre: Ufrgs, 2020. Chap. 5. p.177-241.

BRUBACHER, J. P. et al. Gap filling in daily precipitation time series in Rio Grande do Sul. Revista Brasileira de Meteorologia, v. 35, p. 335-344, 2020. DOI: https://doi.org/10.1590/0102-7786352035

CARDOSO, I. P. et al. Validation of precipitation data generated by ERA5 reanalysis for the Mirim-São Gonçalo watershed, Brazil. Revista Brasileira de Geografia Física, [S. l.], v. 17, n. 2, p. 824–837, 2024. DOI: 10.26848/rbgf.v17.2.p824-837. Available at: https://periodicos.ufpe.br/revistas/index.php/rbgfe/article/view/259340. Accessed on: Abr. 8. 2024. DOI: https://doi.org/10.26848/rbgf.v17.2.p824-837

CAVALCANTI, I. F. A. Weather and climate in Brazil. Text workshop, 2016.

COLLISCHONN, W.; DORNELES, F. Hydrology for engineering and environmental sciences. 2a ed. Porto Alegre: ABRH, p. 210, 2013.

COPERNICUS CLIMATE CHANGE SERVICE (C3S). 2024. ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). Available at: https://climate.copernicus.eu/climate-reanalysis. Accessed on: Jul. 16. 2024.

COUTINHO, E. R. et al. Application of artificial neural networks (ANNs) in the gap filling of meteorological time series. Revista Brasileira de Meteorologia, v. 33, n. 2, p. 317-328, 2018. DOI: https://doi.org/10.1590/0102-7786332013

CUNHA JÚNIOR, R. O; FIRMINO, P. R. A. Simulation of missing values in precipitation time series for evaluation of imputation methods. Revista Brasileira de Climatologia, v. 30, n. 18, p. 691–714, 2022.

DIAZ, C. C. F.; PEREIRA, J. A. S.; NÓBREGA, R. S. Comparison of data estimated by two different methods for filling rainfall gaps in the Pajeú River basin, Pernambuco, Brazil. Revista Brasileira de Climatologia, v. 22, p. 324-339, 2018.

FERREIRA, G.W.S.; REBOITA, M.S.A. New Look into the South America Precipitation Regimes: Observation and Forecast. Atmosphere, v.13, n.6, 2022. DOI: https://doi.org/10.3390/atmos13060873

FREITAS, I. G. F. de; et al. Assessment of wind speed using hindcast developed by Climatempo for the application of wind resources in Brazil. In: BRAZIL WINDPOWER, 2023. Proceedings [...]. [S.l.: s.n.], 2023. Available at: https://abeeolica.org.br/wp-content/uploads/2023/11/1.3AP_1690574718-Avaliacao-da-Velocidade-do-Vento-Utilizando-Hindcast-Desenvolvido-pela-Climatempo-para-a-Aplicacao-dos-Recursos-Eolicos-no-Brasil.pdf. Accessed on: June 20. 2024.

GONÇALVES, F. N.; BACK, A. J. Analysis of spatial and seasonal variation and trends in precipitation in the Southern region of Brazil. Revista de Ciências Agrárias, vol. 41, no. 3, pp. 592-602, 2018. Available at: https://doi.org/10.19084/RCA17204. Accessed on: June 20. 2024. DOI: https://doi.org/10.19084/RCA17204

GRIMM, A.M.; FERRAZ, S.E.T.; GOMES, J. Precipitation Anomalies in Southern Brazil Associated with El Niño and La Niña Events. Journal of Climate, v. 11, p. 2863–2880, 1998. DOI: https://doi.org/10.1175/1520-0442(1998)011<2863:PAISBA>2.0.CO;2

HAIDEN, T. et al. Use of in situ surface observations at ECMWF. Reading, UK: European Centre for Medium Range Weather Forecasts, 2018.

HERSBACH, H. et al. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, v. 146, p. 1999–2049, 2020. Available at:

https://doi.org/10.55761/abclima.v30i18.15243. Accessed on: Jul. 16. 2024. DOI: https://doi.org/10.55761/abclima.v30i18.15243

INMET. Ministry of Agriculture and Livestock. National Institute of Meteorology. Climatological Normals. [2024]. Available at: https://portal.inmet.gov.br/servicos/normais-climatol%C3%B3gicas. Accessed on: Feb. 02. 2024.

JIANG, C. et al. Evaluation of precipitation reanalysis products for regional hydrological modelling in the Yellow River Basin. Theoretical and Applied Climatology, v. 155, n. 4, p. 2605-2626, 2024. DOI: https://doi.org/10.1007/s00704-023-04758-w

KENDALL, M. G. Rank Correlation Methods. Griffin. London. 1975.

LAVERS, D. A. et al. An evaluation of ERA5 precipitation for climate monitoring. Quarterly Journal of the Royal Meteorological Society, v. 148, n. 748, p. 3152-3165, 2022. DOI: https://doi.org/10.1002/qj.4351

MANN, H. B. Nonparametric tests against trend. Econometrica. Chicago, v. 13, n. 3, p. 245-259, 1945. DOI: https://doi.org/10.2307/1907187

MENDONÇA, F.; DANNI-OLIVEIRA, I. M. Climatology: basic concepts and climates of Brazil. Oficina de Textos, 2017.

MUKAKA, M. M. Statistics Corner: A guide to appropriate use of Correlation coeficiente in medical research. Malawi Medical Journal, v. 24, n. 3, p. 69-71, 2012.

NOGUEIRA, N. C. de O., MACHADO, P. H. G., REBOITA, M. S. Climatological Study of Cold Fronts active in Southern Rio Grande do Sul and Southern Minas Gerais between 2009 and 2021. Revista Brasileira de Climatologia, vol. 34, no. 20, pp. 306–334, 2024. DOI: https://doi.org/10.55761/abclima.v34i20.16664

OLIVEIRA, L. F. C. et al. Comparison of methodologies for gap-filling in historical time series of annual precipitation. Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 14, no. 11, pp. 1186-1192, 2010. DOI: https://doi.org/10.1590/S1415-43662010001100008

OLIVEIRA, T. A.; SANCHES, F. de O.; FERREIRA, C. de C. M. Application and evaluation of techniques for gap-filling of rainfall data in typical, dry, and rainy years. Revista Entre-Lugar, vol. 12, no. 24, pp. 301–320, 2021. DOI: 10.30612/rel.v12i24.15137. Available at: https://ojs.ufgd.edu.br/index.php/entre-lugar/article/view/15137. Accessed on: Mar. 10. 2024. DOI: https://doi.org/10.30612/rel.v12i24.15137

PIERSANTE, J. O. et al. A synoptic evolution comparison of the smallest and largest MCSs in subtropical South America between spring and summer. Monthly Weather Review, v. 149, n. 6, p. 1943-1966, 2021. DOI: https://doi.org/10.1175/MWR-D-20-0208.1

REBOITA, M. S.; et al. Impacts of teleconnection patterns on South America climate. Annals of the New York Academy of Sciences, v. 1504, n. 1, p. 116-153, 2021. DOI: https://doi.org/10.1111/nyas.14592

RODRIGUES, A. A. et al. Rainfall trend and variability in Rio Grande do Sul, Brazil. Revista Brasileira de Climatologia, v. 32, 2023. Available at: https://doi.org/10.55761/abclima.v32i19.16179. Acessed on: Jun. 19. 2024. DOI: https://doi.org/10.55761/abclima.v32i19.16179

ROSA, A (Ed.); SILVA, C. S. da (Ed.); SILVA, J. A. O. da (Ed.). Camaquã river basin plan 2015/2035. Porto Alegre: SEMA, 2016. Available at: https://drive.google.com/file/d/0Byn_B-4Lg7RGQXN4SldKRVM1VVk/view. Accessed on: Mar. 10. 2024.

ROSSATO, M. S. The climates of Rio Grande do Sul: a proposal for climatic classification. Revista Entre-Lugar, vol. 11, no. 22, pp. 57-85, 2020. DOI: https://doi.org/10.30612/el.v11i22.12781

SALES, E. S. G.; et al. Relationship between NDVI and EVI with climatic indices in Northeast Brazil. Geoambiente On-line, no. 47, pp. 394-422, 2023. Available at: https://www.researchgate.net/publication/376597127_RELACAO_DO_NDVI_E_EVI_COM_OS_INDICES_CLIMATICOS_DO_NORDESTE_DO_BRASIL. Accessed on: Sep. 12. 2025.

SANCHES, F. O.; VERDUM, R.; FISCH, G. Long-term trend of daily rainfall in Southwestern Rio Grande do Sul: extreme events and arenization. Revista Brasileira de Geografia Física, Recife, vol. 7, no. 6, pp. 1100-1109, 2014. DOI: https://doi.org/10.5935/1984-2295.20140012

SANTOS, F. A., et al. Long-term variability and trend analysis of the rainfall distribution in the state of Bahia, Northeast Brazil. Theoretical and Applied Climatology, v. 148, n. 3-4, p. 1423-1433, 2022. Available at: https://doi.org/10.1007/s00704-021-03838-4. Acessed on: Mar. 12. 2024.

SARKAR, D. et al. Compiling non-parametric tests along with CA-ANN model for precipitation trends and variability analysis: A case study of Eastern India. Water Cycle, v. 2, p. 71-84, 2021. DOI: https://doi.org/10.1016/j.watcyc.2021.11.002

SCAGLIONI, T. P. et al. Climatic oscillations and the relationship with extreme precipitation events in the Camaquã river basin/RS. Revista Brasileira de Climatologia, vol. 33, pp. 260-277, 2023. DOI: https://doi.org/10.55761/abclima.v33i19.16649

SCAGLIONI, T. P.; FERNANDES, R. K. U.; NUNES, A. B. Extreme events of precipitation excess and deficit in the Camaquã River Basin from 1991-2020. Conjecturas, vol. 22, no. 2, pp. 672-686, 2022. DOI: https://doi.org/10.53660/CONJ-565-A21

SEN, P. K. Estimates of the regression coeficiente based on Kendall’s Tau. Journal of the American Statistical Association, v. 63, p. 1379-1389, 1968. DOI: https://doi.org/10.1080/01621459.1968.10480934

SILVA, M. V.; CAMPOS, C. R. J. Decadal anomalies of the hydrological regime of RS from 1977 to 2006. Ciência e Natura, UFSM, vol. 22, no. 1, pp. 75-89, 2011.

TANG, G.; et al. Em-Earth: The Ensemble Meteorological Dataset for Planet Earth. Bulletin of the American Meteorological Society, v. 103, n.4, p. E996–E1018, 2022. DOI: https://doi.org/10.1175/BAMS-D-21-0106.1

WMO. Guide to climatological practices. Geneva: World Meteorological Organization, 2018.

Publicado

27-09-2025

Como Citar

Pegoraro Scaglioni, T., Straceione , M. M., & Nunes , A. B. (2025). Analysis of the historical series of monthly precipitation in the Camaquã Hydrographic Basin, Brazil, based on observed and high-resolution numerical data. Revista Brasileira De Climatologia, 37(21), 385–404. https://doi.org/10.55761/abclima.v37i21.19261

Edição

Seção

Artigos