Caso de Estudio de Lluvia Intensa para la Ciudad de Fortaleza-CE y Municipios Costeros Utilizando el Modelo WRF 3.9.1
DOI:
https://doi.org/10.55761/abclima.v35i20.17072Palabras clave:
Pronóstico, inundación, nube, WRF.Resumen
Este estudio investiga un evento extremo de lluvia ocurrido en Fortaleza el 3 de enero de 2015, que resultó en daños materiales significativos e impactos socioeconómicos en la región. La investigación se centra en la aplicación del modelo numérico WRF 3.9.1 (Weather Research and Forecasting) para simular este evento, utilizando diferentes esquemas de parametrización física y realizando pruebas de sensibilidad. Los resultados demuestran que las parametrizaciones físicas probadas fueron capaces de reproducir el sistema de convección que afectó no solo a Fortaleza, sino también a los municipios de Paracuru, Aquiraz, Cascavel y Guanaces. Notablemente, la simulación utilizando la microfísica de Thompson logró una representación más precisa de la precipitación. Este enfoque proporciona ideas importantes para mejorar la predicción y comprensión de eventos extremos de lluvia, contribuyendo así a la mitigación de sus impactos.
Descargas
Citas
ALBUQUERQUE, T.; SANTOS, J.; Reis Jr, N. C.; Pimentel, L. C. G.; & MOREIRA, D. 2014. Avaliação das parametrizações físicas do modelo WRF para a camada limite atmosférica para a região Metropolitana da Grande Vitória.
BRASILEIRO, F. M. G.; BARBOSA, L. N.; ZANELLA, M. E. 2017. Análise comparativa dos eventos pluviométricos intensos em FORTALEZA/CE e SÃO LUÍS/MA no período de 1987 A 2017. Disponível em: https://revistastestes.uece.br/index.php/GeoUECE/article/view/2011. Acesso em: 28 de out. 2022.
CHEN, F. & DUDHIA, J. 2001. Coupling an advanced land surfacehydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129: 569-585.
COMIN, A. N., JUSTINO, F., PEZZI, L., GURJÃO, C. D. D. S., SHUMACHER, V., FERNÁNDEZ, A., & SUTIL, U. A. (2020). Extreme rainfall event in the Northeast coast of Brazil: a numerical sensitivity study. Meteorology and Atmospheric Physics, 1-22.
COUTINHO, M. D. L.; da SILVA COSTA, M.; dos SANTOS GOMES, A. C.; de MORAIS, M. D. C.; JACINTO, L. V.; LIMA, K. C.; & SAKAMOTO, M. S. 2017. Estudo de Caso: Evento Meteorológico no Nordeste do Brasil entre os Dias 03 e 04 de Janeiro de 2015. Revista Brasileira de Climatologia, 20.
COUTINHO, M. D. L.; GAN, M. A.; RAO, V. B. 2010.Método objetivo de identificação dos vórtices ciclônicos de altos níveis na região tropical sul: Validação. Revista Brasileira de Meteorologia, v.25, n.3, 311-323.
C. SKAMAROCK, W. et al. 2008. A Description of the Advanced Research WRF Version 3, s.l.: s.n.
CORREIA FILHO, W. L. F., et al. 2019. Rainfall variability in the Brazilian northeast biomes and their interactions with meteorological systems and ENSO via CHELSA product. Big Earth Data, 3(4), 315– 337.https://doi.org/10.1080/20964471.2019.16 92298. Acesso: 18 ago. 2022.
DE LIMA, JOÃO, S. Q.; DE OLIVEIRA, S.; JADER, ZANELLA, M. E. 2018. Impactos das chuvas na cidade de Fortaleza no triênio 2013, 2014 e 2015. Territorium, n. 25, p. 5-22. Disponível em: https://dialnet.unirioja.es/servlet/articulo?codigo=6229239. Acesso em: 28 de out. 2022.
de ALMEIDA DANTAS, V.; FILHO; V. D. P. S.; & VIEIRA, L. S. 2022. Estudo avaliativo da parametrização cúmulos do Modelo WRF 4.0 para um caso de precipitação extrema ocorrido em Fortaleza Ce, Brasil. Revista Brasileira de Geografia Física, 15(02), 817-826.
DUDHIA, J.; HONG, S.-Y.; LIM, K.-S. 2008 A new method for representing mixed-phase particle fall speeds in bulk microphysics parameterizations. J. Meteorol. Soc. Japan. 86A, 33– 44.
DUDHIA, J. 2014. Overview of WRF physics. University Corporation for Atmospheric Research, Boulder, CO. Disponivel em http://www2. mmm. ucar. edu/wrf/users/tutorial/201401/Physics_full.pdf. Acesso em: 15 de abr. 2022.
EUMETCAL. 2015. The European Virtual Organisation for Meteorological Training. Disponivel em: http://www.eumetcal.org/ . Acesso em 16 de abril de 2022.
EFSTATHIOU, G. A., ZOUMAKIS, N. M., MELAS, D., LOLIS, C. J., & KASSOMENOS, P. (2013). Sensitivity of WRF to boundary layer parameterizations in simulating a heavy rainfall event using different microphysical schemes. Effect on large-scale processes. Atmospheric research, 132, 125-143.
FERREIRA, RUTE COSTA et al. 2020. Impacto das Parametrizações de Microfísica na Previsão de Precipitação utilizando Assimilação de Dados de Radar. Revista Brasileira de Meteorologia, v. 35, p. 123-134.
FERRIER, B. S.; JIN, Y.; LIN, Y.; BLACK, T.; ROGERS, E.; and DIMEGO, G. 2002. Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model, Preprints, 15th Conf. On Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 280–283.
GAN, M. A.; KOUSKY, V. E. 1986. Vórtices ciclônicos da alta troposfera no oceano Atlântico Sul. Revista Brasileira de Meteorologia, v. 1, p. 19-28.
GRELL, G. A.; FREITAS, S. R. 2014. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmospheric Chemistry and Physics, 14, p. 5233–5250, 2014. DOI:10.5194/acp-14-5233.
GONZÁLEZ, G.; DAVID. I. 2020. Clima organizacional y desempeño laboral de los servidores públicos del Servicio de Rentas Internas (Master's thesis, Universidad Técnica de Ambato. Facultad de Ciencias Administrativas. Maestría en Administración Pública.).
GOMES, R. C.; ZANELLA, M. E.; OLIVEIRA, V. P. V. de. 2005. IDENTIFICAÇÃO DAS ÁREAS DE RISCOS RELACIONADAS AOS EVENTOS PLUVIOMÉTRICOS EXTREMOS NA ZONA URBANA DE INDEPENDÊNCIA-CE. REDE - Revista Eletrônica do PRODEMA, Fortaleza, v. 15, n. 2, p. 178-198, maio 2022. ISSN 1982-5528. Disponível em: http://www.revistarede.ufc.br/rede/article/view/728. Acesso em: 14 ago. 2022.
GRELL, G. A.; FREITAS, S. R. 2014. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmospheric Chemistry and Physics, 14, p. 5233–5250, 2014. DOI:10.5194/acp-14-5233.
HALL, W. A. 1980. Detailed microphysical model within a two-dimensional framework: Model description and preliminary results. Journal of the Atmospheric Sciences, v. 37, p. 2486-2507.
HALLAK, R.; PEREIRA FILHO, J. 2011. Metodologia para análise de desempenho de simulações de sistemas convectivos na região metropolitana de São Paulo com o modelo ARPS: Sensibilidade a variações com os esquemas de advecção e assimilação de dados. Revista Brasileira de Meteorologia, v.26, n.4, 591 – 608, 2011.
HÄNSEL, S., et al. 2016. Assessing Homogeneity and Climate Variability of Temperature and Precipitation Series in the Capitals of North-Eastern Brazil. Frontiers in Earth Science, 4(March), 1–21. https://doi.org/10.3389/feart.2016.00029. Acesso: 20 jul. 2022.
HASTENRATH, S., 2012. Exploring the climate problems of Brazil’s Nordeste: A review. Climatic Change, 112(2), 243–251. https://doi.org/10.1007/s10584-011-0227-1.
HERNÁNDEZ, L. 2016. Esquema de microfísica de nuvens do modelo Eta: diagnóstico e testes de sensibilidade (Doctoral dissertation, Dissertação (Mestrado). Instituto Nacional de Pesquisas Espaciais, São José dos Campos, São Paulo).
HONG, S. Y.; NOH, Y.; DUDHIA, J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, v. 134, p. 2318–2341. DOI:10.1175/MWR3199.
HONG, S.-Y.; AND J. O. J. LIM. 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.
HONG, S.Y.; DUDHIA, J.; CHEN, S.H. 2004. A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Monthly Weather Review, v. 132, p. 103-120.
IDALINO, FILIPE DAROS et al. 2020. Variabilidade de precipitação e temperatura média superficial do ar no norte da região de Aisén, Chile, no período de 1950-2017. Revista GeoUECE. Programa de Pós-Graduação em Geografia da Universidade Estadual do Ceará, 2020. Vol. 9, Unesp. 2 (2020), p. 6-2.
JUNIOR, AUDIVAN RIBEIRO GARCES et al. 2020. Análise comparativa dos eventos pluviométricos intensos em Fortaleza/CE e São Luís/MA no período de 1987 a 2017. Revista GeoUECE, v. 9, n. 17, p. 70-86.
JIMENEZ, P.A.; DUDHIA, J.; GONZALEZ-ROUCO, J.F.; NAVARRO, J.; MONTALVEZ, J.P.; GARCIABUSTAMANTE, E. 2012. A revised scheme for the WRF surface layer formulation. Monthly Weather Review, v. 40, p. 898-918. Doi:10.1175/MWR-D-11-00056.1.
KESSLER, E. 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.
KANAMITSU, M.; EBISUZAKI, W.; WOOLLEN, J.; YANG, S.-K.; HNILO, J. J.; FIORINO, M.; POTTER, G. L. NCEP–DOE AMIP-II Reanalysis (R-2).2002. Bulletin of the American Meteorological Society, v. 83, n. 11, p. 1631–1643.
KOUSKY, V. E.; GAN, M.A. 1981. Upper tropospheric cyclonic vortices in the tropical south Atlantic, Tellus, 33, 538-551.
KOGAN, Y. L. 1991. The simulation of a convective cloud in a 3-D model with explicit microphysics: Part I. Model description and sensitivity experiments. Journal of the Atmospheric Sciences, v. 48, p. 1160-1189.
LIN, Y. L.; FARLEY, R. D.; ORVILLE, H. D. 1983. Bulk parameterization of the snow field in a cloud model. Journal of Climate Appl. Meteorol., v. 22, p. 1065-1092.
MEYERS, M.P.; R. L. WALKO, J.Y.; HARRINGTON, W.R. Cotton. 1997. New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmospheric Research, v. 45, p. 3-39.
MARTINS, R. C. G. 2014. Estudo da sensibilidade do modelo WRF às parametrizações de microfísica de nuvens e à assimilação de dados observados. Disponível em: http://dspace.sti.ufcg.edu.br:8080/xmlui/handle/riufcg/1466. Acesso em: 10 de abr. 2022.
MOURA, Í. J.M.; SANTOS, D.F. DOS; PINHEIRO, F. G. DE M.; OLIVEIRA, C. J. de. 2015. CHARACTERIZATION OF DRY AND WET PERIODS OF FORTALEZA CITY (CE). Ciência e Natura, [S. l.], v. 37, p. 3–7.
Moya-Álvarez, A. S., ESTEVAN, R., KUMAR, S., ROJAS, J. L. F., TICSE, J. J., MARTÍNEZ-CASTRO, D., & SILVA, Y. (2020). Influence of PBL parameterization schemes in WRF_ARW model on short-range precipitation’s forecasts in the complex orography of Peruvian Central Andes. Atmospheric Research, 233-233.
MUNHOZ, J. C. 2022. Padrões sinóticos associados a casos extremos de precipitação no Estado de São Paulo. Disponível em: https://repositorio.unesp.br/handle/11449/234984. Acesso em: 27 out. 2022.
METCLIM, 2017. WRF installation on a Linux machine. Disponível em: https://metclim.ucd.ie/2017/06/wrf-installation-on-a-linux-machine/. Acesso em: 14 de abr. 2022.
MOLION, L.C.B.; BERNARDO, S.O. 2002.UMA REVISÃO DA DINÂMICA DAS CHUVAS NO NORDESTE BRASILEIRO. Revista Brasileira de Meteorologia, RIO DE JANEIRO (RJ), v. 17, n. 1, p. 1-10.
MOLLMANN JUNIOR. 2016. Análise da sensibilidade das Parametrizações no modelo WRF para o Estado do Rio Grande do Sul durante o Inverno de 2014. Revista Brasileira de Geografia Física v.09, n.02 (2016) 368-383.
NOH, Y. J.; HAAR, T. H. V. 2009. Comparison and validation of WRF-ARW cloud microphysics schemes during C3VP/CLEX-10 field experiment. Cooperative Institute for Research in the Atmosphere and Department of Atmospheric Science, Colorado, p.1-5, Jun.
PRABHA, T. V.; KHAIN, A.; MAHESHKUMAR, R.; PANDITHURAI, G.; KULKARNI, J.; KONWAR, M.; GOSWAMI, B. 2011. Microphysics of premonso on and monsoon clouds as seen from in situ measurements during the cloud aerosol interaction and precipitation enhancement experiment (caipeex). Journal of the Atmospheric Sciences, v. 68, n. 9, p. 1882–1901, 20.
SCHWITALLA, T., BRANCH, O., & WULFMEYER, V. (2020). Sensitivity study of the planetary boundary layer and micro- physical schemes to the initialization of convection over the Arabian Peninsula. Quarterly Journal of the Royal Meteorological Society, 146(727), 846-869.
RAO, V. B., LIMA, M. C., E FRANCHITO, S. H. 1993. Seasonal and Interannual Variations of Rainfall over Eastern Northeast Brazil. Journal of Climate, 6(9), 1754–1763. https://doi.org/10.1175/1520- 0442(1993)0062.0.CO2. Acesso: 26 ago. 2022.
RODRIGUES, I.B.; HOLANDA, J. M.; GONÇALVES, D. S.; SALES, M. C. L. 2017. Análise dos eventos de chuva extrema e seus impactos em Fortaleza-CE, de 2004 a janeiro de2015. Revista de Geografia (Recife) V. 34, No. 2.
SANTOS, A.G.; CAMPOS, J.N.B.; SILVA, J., 2014. ANÁLISE DA PREVISÃO PLUVIOMÉTRICA A CURTÍSSIMO PRAZO NA BACIA HIDROLÓGICA DO RIO PARAÍBA DO MEIO UTILIZANDO O MODELO WRF. Revista brasileira de climatologia. ISSN: 1980-055x (Impressa) 2237-8642 (Eletrônica).
SKAMAROCK, W. C.; KLEMP, J. B.; DUDHIA, J. et al. 2008. NCAR Technical Note: A description of the Advanced Research WRF version 3, 113 p[S.l: s.n.].
SIQUEIRA, B. & NERY, J. 2021. Concentração diária e mensal da precipitação pluvial no nordeste do Brasil: uma contribuição dos índices CI e PCI daily and monthly concentration of rain precipitation in northeast Brazil: a contribution from ci and pci indexes concentration quotidienne et mensuelle des précipitations de pluie dans le nordest du Brésil: une contribution des indices CI et PCI. Revista Geografar. 16. 555-570.
TAO, W.-K. and MONCRIEFF, M.: Multi-scale cloud-system modeling, Rev. Geophys., in press, doi:10.1029/2008RG000276, 2009.
THOMPSON, G.; EIDHAMMER, T. 2014. A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. Journal of the Atmospheric Sciences, v. 71, n. 10, p. 3636–3658.
TEWARI. M.; CHEN, F.; WANG, W.; DUDHIA, J.; LEMONE, M. A.; MITCHELL, K.; EK, M.; GAYNO, G.; WEGIEL, J.; CUENCA, R. H. 2004. Implementation and verification of the unified NOAH land surface model in the WRF. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, p. 11-15.
THOMPSON, G.; RASMUSSEN, R.M.; MANNING, K. 2004. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Monthly Weather Review, v. 132, p. 519-542.
UVO, C.; AND RONNY B.1996. "Regionalization and spatial properties of Ceará State rainfall in Northeast Brazil." Journal of Geophysical Research: Atmospheres 101.D2: 4221-4233.
VAREJÃO-SILVA, M. A. 2005. Meteorologia e Climatologia. Versão Digital 1. In: Perturbações Atmosféricas. Recife.
WALKO, R. L.; WILLIAM R. C.; HARRINGTON, J. Y; MICHAEL P. M. 1995. New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmospheric Research, v. 38, p. 29-62.
WILLMOTT, C. J. 1981. On the validation of models. Physical geography, v. 2, n. 2, p. 184-194.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
A aprovação dos artigos implica a aceitação imediata e sem ônus de que a Revista Brasileira de Climatologia terá exclusividade na primeira publicação do artigo. Os autores continuarão, não obstante, a deter os direitos autorais. Os autores autorizam também que seus artigos sejam disponibilizados em todos os indexadores aos quais a revista está vinculada.
Os autores mantém seus direitos de publicação sem restrições
A Comissão Editorial não se responsabiliza pelos conceitos ou afirmações expressos nos trabalhos publicados, que são de inteira responsabilidade dos autores.
A Revista Brasileira de Climatologia oferece acesso livre imediato ao seu conteúdo, seguindo o entendimento de que disponibilizar gratuitamente o conhecimento científico ao público proporciona maior democratização do conhecimento e tende a produzir maior impacto dos artigos publicados. Os artigos publicados na revista são disponibilizados segundo a Licença Creative Commons CC-BY-NC 4.0 (https://creativecommons.org/licenses/by-nc/4.0/). Segundo essa licença é permitido acessar, distribuir e reutilizar os artigos para fins não comerciais desde que citados os autores e a fonte. Ao submeter artigos à Revista Brasileira de Climatologia, os autores concordam em tornar seus textos legalmente disponíveis segundo essa licença