Impactos de los fenómenos de interacción océano-atmosfera en la hidrometeorología de la cuenca del río Gurupi, Amazonía Oriental

Autores/as

DOI:

https://doi.org/10.55761/abclima.v34i20.16900

Palabras clave:

ENOS. Dipolo Atlántico. Precipitación. Tasa de flujo.

Resumen

Eventos extremos impactan la hidrometeorología de las cuencas amazónicas. El objetivo de esta investigación fue analizar los efectos de los extremos climáticos sobre la variabilidad de la precipitación y el caudal en una cuenca de la Amazonía Oriental. Se adquirieron los datos de índices climáticos, hidrometeorológicos y espacializados para el análisis de la cuenca del río Gurupi. Se aplicaron cálculos de correlación, eficiencia, detección de diferencia en distribución, tendencia de cambios en la variabilidad hidroclimática, además de utilizar el Índice de Anomalía de Precipitación. Hay una mayor influencia del Atlántico tropical en la precipitación, así como la precipitación en el desagüe del Alto Gurupi. Se detectaron diferencias significativas en la distribución de las precipitaciones, así como tendencias de aumento y disminución. La climatología regional está marcada por las mayores (menores) precipitaciones del Norte (Sur), con extremos y años anómalos. La cuenca de Gurupi se ve afectada por los extremos climáticos. La evidencia sugiere vulnerabilidad al clima de la región y la necesidad de medidas preventivas.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Dênis José Cardoso Gomes, Universidade do Estado do Pará

PhD student (2023-Current) and Master (2021-2022) in Environmental Sciences by the Graduate Program in Environmental Sciences at the State University of Pará (UEPA), where he is a member of the research group Núcleo de Pesquisas Aplicadas ao Desenvolvimento Regional ( NUPAD) applying geoprocessing and remote sensing techniques to investigate climate and deforestation influences in hydroenvironmental scenarios such as: erosion processes, ecosystem services. Bachelor in Meteorology from the Federal University of Pará (UFPA) (2016-2020). He has experience in the area of ​​Geoscience with an emphasis on Meteorology in the areas: Hydrometeorology; Climatology; Natural Disasters (Soil Erosion and Floods); Environmental Meteorology; Land use and occupation; Biometeorology; Geoprocessing (QGIS, ArcGIS). He was a PIBIC/UFPA scholarship holder (2016 - 2017) and Monitor (2017 - 2019) managing the Laboratory of Hydroenvironmental Modeling Studies (LEMHA), coordinating the elaboration of the database, environmental mapping (precipitation, land use and land cover, NDVI, slope, geomorphology, pedology, risk to erosion and flooding).

Norma Ely Santos Beltrão, Universidade do Estado do Pará

PhD in Remote Sensing at the Faculty of Sciences of the University of Porto (FCUP), Portugal (2017-2019), PhD in Agricultural Economics at Justus-Liebig-Universität Giessen in Germany (2008), recognized by the Federal University of Rio Grande do Sul (UFRGS) with a PhD in Rural Development, a Master's in Production Engineering from the Federal University of Santa Catarina (1996), and a degree in Civil Engineering from the Federal University of Pará (1992). She has been an effective professor at the University of the State of Pará (UEPA) since 1998, where she has held other management positions in parallel, including the coordination of undergraduate and graduate courses, Directorate of Extension at UEPA, Directorate of Environmental Planning at SEMA ( Secretary of State for the Environment - 2011), Director of the Planetarium of Pará, Head of the Department of Applied Social Sciences, among other functions. She is currently Adjunct Professor IV at the University of the State of Pará, working in the Department of Applied Social Sciences, and permanent professor of the Graduate Program in Environmental Sciences (master's degree). In the area of ​​research, he is leader of the research group NUPAD - Nucleus of Research Applied to Regional Development and develops research in the areas of Regional Development, Environmental Policy and Management, Environmental Economics, Environmental Valuation, Ecosystem Services and the use of Geoprocessing and Remote sensing to identify environmental variations in the Amazon territory using the following tools: QGIS, SNAP and Google Earth Engine.

Citas

ALEMU, Z. A.; DIOHA, M. Climate change and trend analysis of temperature: the case of Addis Ababa, Ethiopia, Environmental Systems Research, v. 9, n. 27, p. 1-15, 2020.

ANA .Agência Nacional de Águas e Sanemanto Básico. (2021, 4 de Dezembro). Retrieved in https://www.snirh.gov.br/portal/centrais-de-conteudos/conjuntura-dos-recursos hidricos/conjuntura-dos-recursos-hidricos.

Agência Nacional de Águas e Sanemanto Básico - ANA. Sistema Nacional de Informações sobre Recursos Hídricos. (2021, 4 de Dezembro). Retrieved in http://www.snirh.gov.br/hidroweb/.

ARAÚJO, R. G.; ANDREOLI, R. V.; CANDIDO, L. A.; KAYANO, M. T.; SOUZA, R. A. F. A influência do evento El Niño – Oscilação Sul e Atlântico Equatorial na precipitação sobre as regiões norte e nordeste da América do Sul. Acta Amazônica, v. 43 n. 4, p. 469-480, 2013.

ASFAW, A.; SIMANE, B.; HASSEN, A.; BANTIDER, A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: a case study in Woleka sub-basin. Weather and Climate Extremes, v. 19, p. 29-41, 2018.

BAHAGA, T. K.; FINK, A. H.; KNIPPERTZ, P. Revisiting interannual to decadal teleconnections influencing seasonal rainfall in the Greater Horn of Africa during the 20th century. International Journal of Climatology, v. 39, n. 5, p. 2765-2785, 2019.

BARICHIVICH, J.; GLOOR, E.; PEYLIN, P.; BRIENEN, R. J. W.; Schongart, J.; Espinoza, J. C.; Pattnayak, K. C. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Science Advances, v. 4, n. 9, p. 1-7, 2018.

BELAY, A. S.; FENTA, A. A.; YENEHUN, A.; NIGATE, F.; TILAHUN, S. A.; MOGES, M. M.; DESSIE, M.; ADGO, E.; NYSSEN, J.; CHEN, M.; VAN GRIENSVEN, A.; WALRAEVENS, K. Evaluation and application of multi-source satellite rainfall product CHIRPS to assess spatio-temporal rainfall variability on data-sparse western margins of Ethiopian highlands. Remote Sensing, v. 11 n. 22, p. 1-22, 2019. https://doi.org/10.3390/rs11222688.

BOUGARA, H.; HAMED, K. B.; BORGEMEISTER, C.; TISCHBEIN, B.; KUMAR, N. (2020). Analyzing trend and variability of rainfall in the Tafna basin (Northwestern Algeria). Atmosphere, v. 11, n. 4, p. 1-24, 2020. https://doi.org/10.3390/atmos11040347.

BRITO, A. P.; SILVA, N. C.; TOMASELLA, J.; FERREIRA, S. J. F.; MONTEIRO, M. T. F. Análise do Índice de Anomalia de Chuva e tendência de precipitação para estações pluviométrica na Amazônia central. Revista Brasileira de Meteorologia, v. 37, n. 1, p. 19-30, 2022.

CAI, W.; MCPHADEN, M. J.; GRIMM, A. M.; RODRIGUES, R. R.; TASCHETTO, A. S.; GARREAUD, R. D.; DEWITTE, B.; POVEDA, G.; HAM, Y.; SANTOSO, A.; NG, B.; ANDERSON, W.; WANG, G.; GENG, T.; JO, H.; MARENGO, J. A.; ALVES, L. M.; OSMAN, M.; LI, S.; WU, L.; KARAMPERIDOU, C.; TAKAHASHI, K.; VERA, C. Climate impacts of the El Niño-Southern Oscillation on South America. Nature Reviews Earth & Environment, v. 1, p. 215-231, 2020.

CAPOZZOLI, C. R.; CARDOSO, A. O.; FERRAZ, S. E. T. Padrões de variabilidade de vazão de rios nas principais bacias brasileiras e associações com índices climáticos. Revista Brasileira de Meteorologia, v. 32, n. 2, p. 243-254, 2017. https://doi.org/10.1590/0102-77863220006.

CAROLETTI, G. N.; COSCARELLI, R.; CALOIERO, T. Validation of satellite, reanalysis and RCM data of Monthly rainfall in Calabria (Southern Italy). Remote Sensing, v. 11, n. 13, p. 1-20, 2019.

CAROLETTI, G. N.; COSCARELLI, R.; CALOIERO, T. A sub-regional approach to the influence analysis of teleconnection patterns on precipitation in Calabria (Southern Italy). International Journal of Climatology, v. 41, n. 9, p. 4574-4586, 2021. https://doi.org/10.1002/joc.7087.

Climate Hazards Group InfraRed Precipitation with Stations - CHIRPS. Climate Hazard Center – UC Santa Bárbara. (2021, 11 de Dezembro). Retrieved in https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_annual/tifs/.

COSTA, A. C. L.; ROWLAND, L.; OLIVEIRA, R. S.; OLIVEIRA, A. A. R.; BINKS, O. J.; SALMON, Y.; VASCONCELOS, S. S.; SILVA JUNIOR, J. A.; FERREIRA, L. V.; POYATOS, R.; MENCUCCINI, M.; MEIR, P. Stand dynamics modulate water cycling and mortality risk in droughted tropical forest. Global Change Biology, v. 24, n. 1, p. 249-258, 2018.

COSTA, J.; PEREIRA, G.; SIQUEIRA, M. E.; CARDOZO, F. Validação dos dados de precipitação estimados pelo CHIRPS para o Brasil. Revista Brasileira de Climatologia, v. 24, p. 228-243, 2019.

ELY, D. F.; DUBREUIL, V. Análise das tendências espaço-temporais das precipitações anuais para o estado do Paraná – Brasil. Revista Brasileira de Climatologia, v. 21, p. 553-569, 2017.

FUNK, C.; PETERSON, P.; LANDSFELD, M.; PEDREROS, D.; VERDIN, J.; SHUKLA, S.; HUSAK, G.; ROWLAND, J.; HARRISON, L.; HOELL, A.; MICHAELSEN, J. The climate hazards infrared precipitation with stations – a new environmental record for monitoring extremes. Scientific Data, v. 2, n. 150066, 2015. https://doi.org/10.1038/sdata.2015.66.

Golden Gate Weather Services. (2021, July 12). Retrieved in https://ggweather.com/enso/oni.htm.

GOMES, G. D.; NUNES, A. M. B.; LIBONATI, R.; AMBRIZZI, T. Projections of subcontinental changes in seasonal precipitation over the two major river basins in South America under an extreme climate scenario. Climate Dynamics, v. 58, p. 1147-1169, 2022.

GONZALES, E.; INGOL, E. Determination of a new coastal ENSO oceanic index for Northern Peru. Climate, v. 9, n. 5, p. 1-23, 2021. https://doi.org/10.3390/cli9050071.

HAYASHI, M.; JIN, F.; STUECKER, M. F. Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern. Nature Communications, v. 11, n. 4230, p. 1-10, 2020.

Instituto Nacional de Meteorologia – INMET. Normais Climatológicas. (2022, August 19). Retrieved in https://clima.inmet.gov.br/NormaisClimatologicas/1961-1990/precipitacao_acumulada_mensal_anual.

JIMENÉZ, J. C.; LIBONATI, R.; PERES, L. Droughts over Amazonia in 2005, 2010, and 2015: a cloud cover perspective. Frontiers in Earth Science, v. 6, n. 227, p. 1-7, 2018.

JIMENÉZ, J. C.; MARENGO, J. A.; ALVES, L. M.; SULCA, J. C.; TAKAHASHI, K.; FERRETT, S.; COLLINS, M. The role of ENOS flavours and TNA on recent droughts over Amazon forests and the Northeast Brazil region. International Journal of Climatology, v. 41, n. 7, p. 3761-3780, 2019. https://doi.org/10.3389/feart.2018.00227.

JIMNÉZ-MUÑOZ, J. C.; MATTAR, C.; BARICHIVICH, J.; SANTAMARÍA-ARTIGAS, A.; TAKAHASHI, K.; MALHI, Y.; SOBRINO, J. A.; SCHRIER, G. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016. Scientific Report, v. 6, n. 33130, p. 1-6, 2016. https://doi.org/10.1038/srep33130.

JAHFER, S.; VINAYACHANDRAN, P. N.; NANJUNDIAH, R. S. Long-term impact of Amazon river runoff on northern hemispheric climate. Scientific Reports, v. 7, n. 10989, p. 1-9, 2017.

JORGE, R. L. O.; LUCENA, D. B. Eventos extremos anuais de precipitação em Mauriti-CE. Ciência & Natura, v. 40, n. 65, p. 1-10, 2018. https://doi.org/10.5902/2179460X34045.

KENDALL, M. G. Rank correlation methods. Oxford University Press, Ed., 272, 1975.

KRAKAUER, N. Y.; PRADHANANG, S. M.; LAKHANKAR, T.; JHA, A. K. Evaluating satellite products for precipitation estimation in mountain regions: a case study for Nepal. Remote Sensing, v. 5, p. 4107-4123, 2013. https://doi.org/10.3390/rs5084107.

MARENGO, J. A.; JIMENEZ, J. C.; ESPINOZA, J.; CUNHA, A. P.; ARAGÃO, L. E. O. Increased climate pressure on the agricultural frontier in the Eastern Amazonia-Cerrado transition zone. Scientific Reports, v. 12, n. 457, p. 1-10, 2022.

MENDES, A. T.; ZUCOWSKI JUNIOR, J. C. Caracterização do regime pluviométrico do município de Araguaína-TO. Revista Brasileira de Meteorologia, v. 34, n. 4, p. 449-458, 2019.

MELLO, Y. R.; KOHLS, W.; OLIVEIRA, T. M. N. Uso de diferentes métodos para preenchimento de falhas em estações pluviométricas. Boletim Geográfico, v. 35, n. 1, p. 112-121, 2017.

MMA. Ministério do Meio Ambiente. Caderno da Região Hidrográfica Atlântico Nordeste Ocidental (2022, January 13). Retrieved in http://www.bibliotecaflorestal.ufv.br/bitstream/handle/123456789/3483/Parte-1-Caderno-da-Regi%C3%A3o-Hidrogr%C3%A1fica-Atl%C3%A2ntico-Nordeste Ocidental_MMA.pdf?sequence=1.

NASCIMENTO, M. B.; ALMEIDA, N. V.; ARAÚJO, L. E. Análise da variabilidade da precipitação pluviométrica na microrregião de Umbuzeiro, Paraíba. Revista Brasileira de Climatologia, v. 26, n. 16, p. 233-248, 2020. https://doi.org/10.5380/abclima.v26i0.65498.

NIAZ, R.; ALMAZAH, M. M. A.; AL-DUAIS, F. S.; IQBAL, N.; KHAN, D. M.; HUSSAIN, I. Spatiotemporal analysis of meteorological drought variability in a homogeneous region using standardized drought indices. Geomatics, Natural Hazards and Risk, v. 13, n. 1, p. 1457-1481, 2022. https://doi.org/10.1080/19475705.2022.2079429.

NOAA. National Oceanic Atmospheric and Administration. Climate Indices List. (2021, Dezember 2). Retrieved in https://psl.noaa.gov/data/climateindices/list/.

NOBRE, G. G.; MUIS, S.; VELDKAMP, T. I. E.; WARD, P. J. Achieving the reduction of disaster risk by better predicting impacts of El Niño and La Niña. Progress in Disaster Science, v. 2, p. 1-6, 2019. https://doi.org/10.1016/j.pdisas.2019.100022.

OLAFSDOTTIR, H. K.; ROOTZÉN, H.; BOLIN, D. Extreme rainfall events in the Northeastern United States become more frequent with rising temperatures, but their intensity distribution remains stable. Journal of Climate, v. 34, n. 22, p. 8863-8877, 2021.

PEDREIRA JUNIOR, A. L.; QUERINO, C. A. S.; BIUDES, M. S.; MACHADO, N. G.; SANTOS, L. O. F.; IVO, I. O. Influence of El Niño and La Niña phenomena on seasonality of the relative frequency of rainfall in southern Amazonas mesoregion. Revista Brasileira de Recursos Hídricos, v. 25, p. 1-8, 2020. https://doi.org/10.1590/2318-0331.252020190152.

RATA, M.; DOUAOUI, A.; LARID, M.; DOUAIK, A. Comparison of geostatistical interpolation methods to map annual rainfall in the chéliff watershed, Algeria. Theoretical and Applied Climatology, v. 141, p. 1009-1024, 2020. https://doi.org/10.1007/s00704-020-03218-z.

REBOITA, M. S.; SANTOS, I. A. Influência de alguns padrões de teleconexão na precipitação no Norte e Nordeste do Brasil. Revista Brasileira de Climatologia, v. 15, p. 28-48, 2014.

REN, G.; CHAN, J. C. L.; KUBOTA, H.; ZHANG, Z.; LI, J.; ZHANG, Y.; ZHANG, Y.; YANG, Y.; REN, Y.; SUN., X.; SU, Y.; LIU, Y.; HAO, Z.; XUE, X.; QIN, Y. Historical and recent change in extreme climate over East Asia. Climate Change, v. 168, n. 22, p. 1-19, 2019.

RODRIGUES, B. D.; COUTINHO, M. D. L.; SAKAMOTO, M. S.; JACINTO, L. V. Uma análise sobre as chuvas no Ceará baseada nos eventos de El Niño, La Niña e no Dipolo do Servain durante a estação chuvosa. Revista Brasileira de Climatologia, v. 28, p. 507-519, 2019.

ROOY, M. P. V. A. rainfall anomaly index independent of time and space. Notes. Weather Bureau of South Africa, v. 14, p. 43-48, 1965.

RUEZZENE, C. B.; MIRANDA, R. B.; TECH, A. R. B.; MAUAD, F. F. Preenchimento de falhas em dados de precipitação através de métodos tradicionais e por inteligência artificial. Revista Brasileira de Climatologia, v. 29, p. 177-204, 2021.

SALES, D. P.; OLIVEIRA NETO, F. M. O. Análise da distribuição das queimadas no cerrado maranhense, Brasil (2014-2018). Revista Meio Ambiente e Sustentabilidade, v. 9, n. 18, p. 17-31, 2020. https://doi.org/10.22292/mas.v9i18.880.

SALVIANO, M. F.; GROPPO, J. D.; PELLEGRINO, G. Q. Análise de tendências em dados de precipitação e temperatura no Brasil. Revista Brasileira de Meteorologia, v. 31, n. 1, p. 64-73, 2016. https://doi.org/10.1590/0102-778620150003.

SANTOS, F. A.; MENDES, L. M. S.; CRUZ, M. L. B. Avaliação de ocorrências de eventos climáticos extremos na sub-bacia hidrográfica do rio Piracuruca. Revista GEOgrafias, v. 28, n. 1, p. 43-61, 2020.

SANTOS, J. S.; ROCHA, E. J. P.; SOUZA JUNIOR, J. A.; SANTOS, J. S.; SANTOS, F. A. A. Climatologia da Amazônia Oriental: uso de prognósticos climáticos como ferramenta de prevenção de ameaças naturais. Revista Brasileira de Geografia Física, v. 12, n. 5, p. 1853-1871, 2019.

SCHUMACHER, V.; JUSTINO, F.; LEONARDO, N. F.; PEREIRA, M. P. Disentangling the role of the Pacific and Atlantic oceans during the Amazonian droughts in 2015. Theoretical and Applied Climatology, v. 148, p. 1057-1067, 2022. https://doi.org/10.1007/s00704-022-03998-6.

SILVA, G. M. F.; ZANCHI, F. B.; SILVA, J. B. L.; BERNARDES, M. E. C. Disponibilidade hídrica de uma bacia hidrográfica no sul da Bahia. Revista Brasileira de Geografia Física, v. 14, n. 3, p. 1597-1611, 2021. https://doi.org/10.26848/rbgf.v14.3.p1597-1611.

SIQUEIRA, A. H. B.; MOLION, L. C. B. Análises climáticas: o filtro Hodrick-Prescott aplicado aos índices atmosféricos da oscilação Sul e da oscilação do Atlântico Norte. Revista Brasileira de Meteorologia, v. 30, n. 3, p. 307-318, 2015. https://doi.org/10.1590/0102-778620130579.

Sistema Integrado de Informações sobre Desastres Naturais - S2iD. Secretaria Nacional de Proteção e Defesa Civil. (2022, July 07). Retrieved in https://s2id.mi.gov.br/.

SOUZA, E. B.; KAYANO, M. T.; AMBRIZZI, T. Intraseasonal and submonthly variability over the eastern Amazon and northeast Brazil during the autumn rainy season. Theorical and Applied Climatology, v. 81, n. 3/4, p. 177-191, 2005.

TOWNER, J.; CLOKE, H. L.; LAVADO, W.; SANTINI, W.; BAZO, J.; PEREZ, E. C.; STEPHENS, E. M. Attribution of Amazon floods to modes of climate variability: a review. Meteorological Applications, v. 27, n. 5, p. 1-36, 2020. https://doi.org/10.1002/met.1949.

TOWNER, J.; FICCHI, A.; CLOKE, H. L.; BAZO, J.; PEREZ, E. C.; STEPHENS, E. M. Influence of ENSO and tropical Atlantic climate variability on flood characteristics in the Amazon basin. Hydrology and Earth System Sciences, v. 25, p. 3875-3895, 2021.

UVO, C. B.; REPELLI, C. A.; ZEBIAK, S. E.; KUSHNIR, Y. The Relationship between Tropical Pacific and Atlantic SST and Northeast Brazil Monthly Precipitation. Journal of Climate, v. 11, p. 551-562, 1998.

ZHANG, C.; HUANG, G.; YAN, D.; WANG, H.; ZENG, G.; WANG, S.; LI, Y. Analysis of South American climate and teleconnection indices. Journal of Contaminant Hydrology, v. 244, p. 1-15, 2022. https://doi.org/10.1016/j.jconhyd.2021.103915.

YE, Q.; AHAMMED, F. Quantification of relationship between annual daily maximum temperature and annual daily maximum rainfall in South Australia. Atmospheric and Oceanic Science Letters, v. 13, n. 4, p. 286-293, 2020.

YUN, K.; TIMMERMANN, A.; STUECKER, M. F. Synchronized spatial shifts of Hadley and Walker circulations. Earth System Dynamics, v. 12, p. 121-132, 2021.

Publicado

14/07/2024

Cómo citar

Gomes, D. J. C., & Beltrão, N. E. S. (2024). Impactos de los fenómenos de interacción océano-atmosfera en la hidrometeorología de la cuenca del río Gurupi, Amazonía Oriental. Revista Brasileña De Climatología, 34(20), 643–667. https://doi.org/10.55761/abclima.v34i20.16900

Número

Sección

Artigos