Statistical analysis of auto-correlation and cross-correlation: a case of study inherent to the issue of water security
DOI:
https://doi.org/10.55761/abclima.v35i20.18891Keywords:
NDVI, EVI, Water Security, DFA, ρ_DCCAAbstract
The vegetation indexes, NDVI and EVI, used in the analysis of remote sensing data, assess the health and vigor of vegetation based on the reflectance measured by sensors on satellites. Based on these values (and its RGB spectral bands) as a function of time, this paper proposes a complete analysis of auto-correlation and cross-correlation, for more than six years of observation. For this purpose, an important environmental protection area was chosen, where energy generation and water security are crucial factors regarding the well-being of millions of inhabitants. For this analysis, the DFA method and the DCCA cross-correlation coefficient were applied. Initially, in the study of auto-correlations, a clear change of behavior in the auto-correlation function was identified around 30 observations, with different exponents values depending on the index applied. Subsequently, in the analysis of the mutual relationship between all indexes, through the DCCA cross-correlation coefficient, it was clear that the value of this coefficient can be negative or positive, with DCCA cross-correlation varying from a weak to a strong level, depending on its time scale.
Downloads
References
Algoritmo para o rho_DCCA [por] Gilney Zebende. [S. l.: s. n], 2021. 1 vídeo (29:31 min). Publicado pelo canal do PPGM UEFS. Disponível em: https://www.youtube.com/watch?v=RQL7Db74yG0. Acesso em: 20 ago. 2024.
ANSARI, S. et al. Standardized Drought Indices on Drought.Gov, Produced with Climate Engine and Google Earth Engine, from Multiple Foundational Precipitation and Temperature Datasets. Disponível em: https://ams.confex.com/ams/104ANNUAL/meetingapp.cgi/Paper/428427. Acesso em: 22 ago. 2024.
BRASIL. Lei nº 6.902, de 27 de abril de 1981. Disponível em: https://www.planalto.gov.br/ccivil_03/LEIS/L6902.htm. Acesso em: 20 ago. 2024.
BRASIL. Lei nº 12.651, de 25 de maio de 2012. Disponível em: https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm?itid=lk_inline_enhanced-template. Acesso em: 20 ago. 2024.
BRITO, A. A.; de ARAÚJO, H. A.; ZEBENDE, G. F. Detrended multiple cross-correlation coefficient applied to solar radiation, air temperature and relative humidity. Scientific Reports, v. 9, n. 1, 1-10, 2019.
CHEN, Z. et al. Effect of nonstationarities on detrended fluctuation analysis. Physical Review E, v. 65, n. 4, 041107, 2002.
DEERING, D. W. Rangeland Reflectance Characteristics Measured by Aircraft and Spacecraft Sensors. Dissertação—Texas A&M University, 1978.
FRAEDRICH, K.; BLENDER, R. Scaling of Atmosphere and Ocean Temperature Correlations in Observations and Climate Models. Physical Review Letters, v. 90, n. 10, 11 mar. 2003.
GARCÍA, L. et al. Construction of Linear Models for the Normalized Vegetation Index (NDVI) for Coffee Crops in Peru Based on Historical Atmospheric Variables from the Climate Engine Platform. Atmosphere, v. 15, n. 8, p. 923–923, 1 ago. 2024.
GONÇALVES, R. V. et al. Analysis of NDVI time series using cross-correlation and forecasting methods for monitoring sugarcane fields in Brazil. International Journal of Remote Sensing, v. 33, n. 15, p. 4653-4672, 2012.
GODWIN, P. et al. Detecting groundwater dependence and woody vegetation restoration with NDVI and moisture trend analyses in an Indonesian karst savanna. Frontiers in Remote Sensing, v. 5, p. 1280712, 2024.
GORELICK, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, v. 202, p. 18–27, dez. 2017.
GUO, E. et al. Temporal and spatial characteristics of extreme precipitation events in the Midwest of Jilin Province based on multifractal detrended fluctuation analysis method and copula functions. Theoretical and Applied Climatology, v. 130, n. 1-2, p. 597–607, 26 ago. 2016.
HENEGHAN, C.; MCDARBY, G. Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes. Physical Review E, v. 62, n. 5, p. 6103–6110, 1 nov. 2000.
HU, K. et al. Effect of trends on detrended fluctuation analysis. Physical Review E, v. 64, n. 1, 26 jun. 2001.
HUBER, P. J. Robust Statistics. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1981.
HUETE, A. R.; JACKSON, R. D.; POST, D. F. Spectral response of a plant canopy with different soil backgrounds. Remote Sensing of Environment, v. 17, n. 1, p. 37–53, fev. 1985.
HUNTINGTON, J. L. et al. Climate Engine: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. Bulletin of the American Meteorological Society, v. 98, n. 11, p. 2397–2410, 1 nov. 2017. Disponível em: hhttp://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-15-00324.1. Acesso em: 20 ago. 2024.
JACKSON, R. D.; HUETE, A. R. Interpreting vegetation indices. Preventive Veterinary Medicine, v. 11, n. 3-4, p. 185–200, dez. 1991.
JIANG, Z.-Q.; ZHOU, W.-X. Multifractal detrending moving-average cross-correlation analysis. Physical Review E, v. 84, n. 1, 21 jul. 2011.
KIRÁLY, A.; JÁNOSI, I. M. Detrended fluctuation analysis of daily temperature records: Geographic dependence over Australia. Meteorology and Atmospheric Physics, v. 88, n. 3-4, p. 119–128, 28 out. 2004.
KOSCIELNY-BUNDE, E. et al. Indication of a Universal Persistence Law Governing Atmospheric Variability. Physical Review Letters, v. 81, n. 3, p. 729–732, 20 jul. 1998.
KRISTOUFEK, L. Measuring Correlations between non-stationary Series with DCCA Coefficient. Physica A: Statistical Mechanics and Its Applications, v. 402, p. 291–298, maio 2014.
LIU, H. Q.; HUETE, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing, v. 33, n. 2, p. 457–465, mar. 1995.
LIU, Q. et al. Characteristics of groundwater drought and its correlation with meteorological and agricultural drought over the North China Plain based on GRACE. Ecological Indicators, v. 161, p. 111925, 2024.
NKIAKA, E. et al. Quantifying the effects of climate and environmental changes on evapotranspiration variability in the Sahel. Journal of Hydrology, p. 131874–131874, 1 ago. 2024.
PENG, C.-K. et al. Mosaic Organization of DNA Nucleotides. Physical Review E, v. 49, n. 2, p. 1685–1689, 1 fev. 1994.
PODOBNIK, B. et al. Statistical Tests for Power-law Cross-correlated Processes. Physical Review E, v. 84, n. 6, 22 dez. 2011.
PODOBNIK, B.; STANLEY, H. E. Detrended Cross-Correlation Analysis: a New Method for Analyzing Two Nonstationary Time Series. Physical Review Letters, v. 100, n. 8, 27 fev. 2008.
SABY, L. et al. Sensitivity of Remotely Sensed Vegetation to Hydrologic Predictors across the Colorado River Basin, 2001–2019. Journal of the American Water Resources Association v. 58 (6): 1017–1029. https://doi.org/10.1111/1752-1688.12965, 2022. Acesso em: 12 dez. 2024.
UN-WATER. What Is Water Security? UN-Water. [s.l: s.n.]. Disponível em: https://www.unwater.org/sites/default/files/app/uploads/2017/05/unwater_poster_Oct2013.pdf. Acesso em: 20 ago. 2024.
VASSOLER, R. T.; ZEBENDE, G. F. DCCA cross-correlation coefficient apply in time series of air temperature and air relative humidity. Physica A: Statistical Mechanics and Its Applications, v. 391, n. 7, p. 2438–2443, abr. 2012.
WALLECZEK, J. et al. Self-Organized Biological Dynamics and Nonlinear Control. [s.l.] Cambridge University Press, 2000. p. 421–428
WANG, G.-J. et al. Random Matrix Theory Analysis of cross-correlations in the US Stock market: Evidence from Pearson’s Correlation Coefficient and Detrended cross-correlation Coefficient. Physica A: Statistical Mechanics and Its Applications, v. 392, n. 17, p. 3715–3730, set. 2013.
ZEBENDE, G. F. DCCA cross-correlation coefficient: Quantifying Level of cross-correlation. Physica A: Statistical Mechanics and Its Applications, v. 390, n. 4, p. 614–618, fev. 2011.
ZEBENDE, G. F.; FERNANDEZ, B. F.; PEREIRA, M. G. Analysis of the Variability in the sdB Star KIC 10670103: DFA Approach. Monthly Notices of the Royal Astronomical Society, v. 464, n. 3, p. 2638–2642, 12 out. 2016.
ZEBENDE, G. F. et al. rho_DCCA Applied between Air Temperature and Relative humidity: An hour/hour View. Physica A: Statistical Mechanics and Its Applications, v. 494, p. 17–26, 1 mar. 2018.
ZEBENDE, G. F. et al. UMA VISÃO HORA A HORA DA AUTOCORRELAÇÃO EM DADOS DE TEMPERATURA E UMIDADE RELATIVA DO AR NA BAHIA. Revista Brasileira de Climatologia, v. 29, p. 99–112, 2021.
Downloads
Published
How to Cite
Issue
Section
License
A aprovação dos artigos implica a aceitação imediata e sem ônus de que a Revista Brasileira de Climatologia terá exclusividade na primeira publicação do artigo. Os autores continuarão, não obstante, a deter os direitos autorais. Os autores autorizam também que seus artigos sejam disponibilizados em todos os indexadores aos quais a revista está vinculada.
Os autores mantém seus direitos de publicação sem restrições
A Comissão Editorial não se responsabiliza pelos conceitos ou afirmações expressos nos trabalhos publicados, que são de inteira responsabilidade dos autores.
A Revista Brasileira de Climatologia oferece acesso livre imediato ao seu conteúdo, seguindo o entendimento de que disponibilizar gratuitamente o conhecimento científico ao público proporciona maior democratização do conhecimento e tende a produzir maior impacto dos artigos publicados. Os artigos publicados na revista são disponibilizados segundo a Licença Creative Commons CC-BY-NC 4.0 (https://creativecommons.org/licenses/by-nc/4.0/). Segundo essa licença é permitido acessar, distribuir e reutilizar os artigos para fins não comerciais desde que citados os autores e a fonte. Ao submeter artigos à Revista Brasileira de Climatologia, os autores concordam em tornar seus textos legalmente disponíveis segundo essa licença