The carbon sink balance and weather conditions in Rio de Janeiro city
DOI:
https://doi.org/10.55761/abclima.v35i20.18187Keywords:
Net Ecosystem Exchange. Carbon Footprint. Urban Climate. Climate Change.Abstract
This study focuses on carbon balance and the role of vegetation and soils on urban fluxes of CO2. The goal is to evaluate the spatio-temporal variability of the Net Ecosystem Exchange (NEE) and its link with weather conditions in Rio de Janeiro from 2016 to 2020. The empiric-biogenic model was used to estimate the hourly flux of NEE at a 300 meter resolution, using remote sensing data, meteorological variables, and a set of coefficients. The results revealed that there is greater absorption of CO2 in elevated vegetation fractions (80-100%) with a maximum NEE of -1.6 gCO2 m2 hour-1, and lower absorption in urbanized areas with a minimum NEE of -0.6 gCO2 m2 hour-1. The NEE value totals varied daily and seasonally as a function of variation in air temperature and rainfall. By nighttime, the respiration of plants and soils emitted CO2 with a mean of 1.8 tCO2 hour-1, and by daytime, the photosynthesis captured up to -6 tCO2 hour-1. The larger NEE values (-1.800 tCO2) were recorded in summer and the lower NEE (200 tCO2) in winter. The findings of this study contribute to promotion of adaptation and mitigation strategies related to the climate change in the city, taking into account the role of green areas on carbon balance.
Downloads
References
AZEVEDO, A.; CAMARA, R.; FRANCELINO, M. R.; PEREIRA, M. G.; LELES, P. S.S. Estoque de carbono em áreas de restauração florestal na Mata Atlântica. Revista Floresta, Curitiba, PR, v. 48, n. 2, p. 183-194, 2018. DOI: http://dx.doi.org/10.5380/rf.v48i2.54447.
BALDOCCHI, D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, v. 9, n. 4, p. 479-492, 2003. DOI: https://doi.org/10.1046/j.1365-2486.2003.00629.x.
BELLUCCO, V. S.; MARRAS, S.; GRIMMOND, C. S. B.; JÄRVI, L.; SIRCA, C. AND SPANO, D. Modelling the biogenic CO2 exchange in urban and non-urban ecosystems through the assessment of light-response curve parameters. Agricultural and Forest Meteorology, v. 236, p. 113-122, 2017. DOI: https://doi.org/10.1016/j.agrformet.2016.12.011.
CARSLAW, D. Worldmet: import surface meteorological data from NOAA Integrated Surface Database (ISD). Disponível em: https://davidcarslaw.github.io/worldmet/. Acesso em: 4 mar. 2024.
CHEN, J.; ZHAO, F.; ZENG, N.; ODA, T. Comparing a global high-resolution downscaled fossil fuel CO2 emission dataset to local inventory-based estimates over 14 global cities. Carbon Balance and Management, v. 15, n. 9, 2020. DOI: https://doi.org/10.1186/s13021-020-00146-3.
CHURKINA, G. Modeling the Carbon Cycle of Urban Systems. Ecological Modelling, v. 216, n. 2, p. 107 - 113, 2008. DOI: https://doi.org/10.1016/j.ecolmodel.2008.03.006.
CHURKINA, G. Carbon cycle of Urban Ecosystems. In: LAL, R.; AUGUSTIN, B. (org.). Carbon sequestration in urban ecosystems. Springer, Netherlands, 2012. p. 315-330. DOI: https://doi.org/10.1007/978-94-007-2366-5_16.
CRAWFORD, B.; CHRISTEN, A. Spatial source attribution of measured urban eddy covariance CO2 fluxes. Theoretical and Applied Climatology, v. 119, p. 733-755, 2014. DOI: https://doi.org/10.1007/s00704-014-1124-0.
EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. GeoInfo - Mapa semidetalhado de solos do município do Rio de Janeiro. Disponível em: http://geoinfo.cnps.embrapa.br/layers/geonode%3Asolos_municipio_rj_75000_2004_lat_long_wgs84_1. Acesso em: 4 mar. 2024.
FUSTER, B.; SÁNCHEZ-ZAPERO, J.; CAMACHO, F.; GARCÍA-SANTOS, V.; VERGER, A.; LACAZE, R.; WEISS, M.; BARET, F.; SMETS, B. Quality Assessment of PROBA-V LAI, fAPAR and fCOVER Collection 300 m Products of Copernicus Global Land Service. Remote Sens, v. 12, p. 1017, 2020. DOI: https://doi.org/10.3390/rs12061017.
GRIMMOND, C.; KING, T.; CROPLEY, F.; NOWAK, D.; SOUCH, C. Local-scale fluxes of carbon dioxide in urban environments: methodological challenges and results from Chicago. Environmental Pollution. v. 116, p.243–254, 2002. DOI: https://doi.org/10.1016/S0269-7491(01)00256-1.
HARDIMAN, B. S.; WANG, J. A.; HUTYRA, L. R.; GATELY, C. K.; GETSON, J. M.; FRIEDL, M. A. Accounting for urban biogenic fluxes in regional carbon budgets. Science of the Total Environment. v. 15, p. 366-372, 2017. DOI: https://doi.org/10.1016/j.scitotenv.2017.03.028.
IBGE - Instituto Brasileiro de Geografia e Estatística, 2021. Disponível em: https://cidades.ibge.gov.br/brasil/rj/rio-de-janeiro/panorama. Acesso em: 4 mar. 2024.
INEA - Instituto Estadual do Ambiente. Biodiversidade De Áreas Protegidas. Disponível em: http://www.inea.rj.gov.br/Portal/Agendas/BIODIVERSIDADEEAREASPROTEGIDAS/UnidadesdeConservacao/INEA_INTER_PQES_MENDANHA. Acesso em: 4 mar. 2024.
IPCC - Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva, Switzerland, 2014. p.151.
KUTSCH, W.; CIAIS, P.; BECKER, M.; CANTONI, C.; CRISTOFANELLI, P.; DELMOTTE, M.; DENIER VAN DER GON, H.; DROSTE, A.; GEROSA, G.; GKRITZALIS, T.; GIELEN, B.; HOLST, J.; KUBISTIN, D.; LUCHETTA, A.; RAMONET, M.; REHDER, G.; RUTGERSSON, A.; STEINBACHER, M.; SUPER, I. Are Carbon Sinks at Risk? FLUXES - The European Greenhouse Gas Bulletin. ICOS ERIC. v. 1, 2022.
MENDES, Keila R. et al. Seasonal variation in net ecosystem CO2 exchange of a Brazilian seasonally dry tropical forest. Scientific Reports, v.10, n. 9454, 2020. DOI: https://doi.org/10.1038/s41598-020-66415-w.
MORIWAKI, R.; KANDA, M. “Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area“. Journal of Applied Meteorology, v. 43, p. 1700-1710, 2004.
NORDBO, A.; JÄRVI, L.; HAAPANALA, S.; WOOD, C. R.; VESALA, T. Fraction of natural area as main predictor of net CO2 emissions from cities. Geophysical Research Letters, v.39, n. 20, p. 20802, 2012. https://doi.org/10.1029/2012GL053087.
ONU, United Nations. Department of economic and social affairs. Population division. World Population Prospects 2019: Data Booket. ST/ESA/SER. A/424, 2019.
PEEL, M. C.; FINLAYSON, B. L.; MCMAHON, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, v. 11, p.1633-1644, 2007. DOI: https://doi.org/10.5194/hess-11-1633-2007.
R CORE TEAM. A Language and Environment for Statistical Computing [Internet]. Vienna: R Foundation for Statistical Computing. Disponível em: https://www.R-project.org/. Acesso em: 4 mar. 2024.
REICHSTEIN, M.; FALGE, E.; BALDOCCHI, D.; PAPALE, D.; AUBINET, M.; BERBIGIER, P.; BERNHOFER, C.; BUCHMANN, N.; GILMANOV, T.; GRANIER, A.; GRÜNWALD, T. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, v. 11, n. 9, p. 1424-1439, set. 2005. DOI: https://doi.org/10.1111/j.1365-2486.2005.001002.x.
SMAC - Secretaria Municipal de Meio Ambiente da Cidade. Inventário da Cobertura Arbórea da Cidade do Rio de Janeiro. 2015. Disponível em: http://www.rio.rj.gov.br/dlstatic/10112/4975980/4158246/InventarioCoberturaArboreadaCidade2015.pdf. Acesso em: 4 mar. 2024.
VELASCO, E.; ROTH, M.; TAN, S. H.; QUA, M.; NABARRO, S. D. A.; NORFORD, L. The role of vegetation in the CO2 flux from a tropical urban neighbourhood. Atmospheric Chemistry and Physics Discussions, v. 13, p. 7267–7310, 2013. DOI: https://doi.org/10.5194/acp-13-10185-2013.
VELASCO, E.; ROTH, M. Cities as net sources of CO2: review of atmospheric CO2 exchange in urban environments measured by eddy covariance technique. Geography Compass, v. 4, n. 9, p. 1238–1259, 2010. DOI: https://doi.org/10.1111/j.1749-8198.2010.00384.x.
WU, D.; LIN, J.C. Urban Biogenic CO2 fluxes: GPP, Reco and NEE estimates from SMUrF, 2010-2019. ORNL DAAC, Oak Ridge, Tennessee, USA, 2021. DOI: https://doi.org/10.3334/ORNLDAAC/1899.
Downloads
Published
How to Cite
Issue
Section
License
A aprovação dos artigos implica a aceitação imediata e sem ônus de que a Revista Brasileira de Climatologia terá exclusividade na primeira publicação do artigo. Os autores continuarão, não obstante, a deter os direitos autorais. Os autores autorizam também que seus artigos sejam disponibilizados em todos os indexadores aos quais a revista está vinculada.
Os autores mantém seus direitos de publicação sem restrições
A Comissão Editorial não se responsabiliza pelos conceitos ou afirmações expressos nos trabalhos publicados, que são de inteira responsabilidade dos autores.
A Revista Brasileira de Climatologia oferece acesso livre imediato ao seu conteúdo, seguindo o entendimento de que disponibilizar gratuitamente o conhecimento científico ao público proporciona maior democratização do conhecimento e tende a produzir maior impacto dos artigos publicados. Os artigos publicados na revista são disponibilizados segundo a Licença Creative Commons CC-BY-NC 4.0 (https://creativecommons.org/licenses/by-nc/4.0/). Segundo essa licença é permitido acessar, distribuir e reutilizar os artigos para fins não comerciais desde que citados os autores e a fonte. Ao submeter artigos à Revista Brasileira de Climatologia, os autores concordam em tornar seus textos legalmente disponíveis segundo essa licença