Seasonality of global solar radiation on vertical surface

Authors

DOI:

https://doi.org/10.55761/abclima.v30i18.15578

Keywords:

Inclined. Global solar radiation. Solar Energy. Vertical

Abstract

Solar radiation is a vital source of all processes on Earth. Besides that, currently, with a growing concern in relation to the use of alternative and sustainable sources of energy, its use has been used as a good solution for energy conversion, water temperature control and thermal comfort. On inclined surfaces, an orientation and the angle of inclination of the surface alter the energy levels received compared to a horizontal surface. The measures of solar irradiation on vertical surfaces can contribute to the planning of installations of solar panels on building facades, thermal comfort and natural lighting. This work aimed to evaluate the data of global solar irradiation on the vertical vertical surface, oriented to the north measured during 2010 at the Faculty of Agronomic Sciences at UNESP in Botucatu. It was compared as measures of global solar radiation on the vertical surface with horizontal surface, in order to analyze the quantitative levels of global solar radiation on the vertical surface during the year for Botucatu-SP. There were also seasonal differences applicable between global vertical and horizontal solar radiation. In the summer months, the irradiation measured on the vertical surface is basically composed of the diffuse and reflected portions. For the use of solar irradiation during the year, a vertical surface is recommended for the months of May to July. In the other months, the horizontal surface is recommended.

Downloads

Download data is not yet available.

Author Biographies

Camila Piacitelli Tieghi , Faculdade de Ciências Agronômicas da Universidade Estadual Paulista de Botucatu, São Paulo, Brasil

Graduada em Informática para gestão de negócios pela Faculdade de tecnologia de Botucatu (FATEC) (2013); Especialização em Gestão de Bancos de dados pela Universidade Luterana do Brasil (ULBRA) (2014); Mestre em Agronomia (Energia na Agricultura) pela Faculdade de Ciências Agronômicas - Universidade Estadual Paulista Júlio de Mesquita Filho (FCA UNESP) (2018). Doutoranda em Agronomia (Energia na Agricultura) pela Faculdade de Ciências Agronômicas - Universidade Estadual Paulista Júlio de Mesquita Filho (FCA UNESP) (Início em 03/2019). Cursando Licenciatura em Pedagogia na Faculdade Campos Elísios.

Alexandre Dal Pai , Faculdade de Ciências Agronômicas da Universidade Estadual Paulista de Botucatu, São Paulo, Brasil

Possui graduação em Física pela Universidade de São Paulo (1998), mestrado em Agronomia (Energia na Agricultura) pela Universidade Estadual Paulista Júlio de Mesquita Filho (2001) e doutorado em Agronomia (Energia na Agricultura) pela Universidade Estadual Paulista Júlio de Mesquita Filho (2005). Atualmente é docente da Faculdade de Ciências Agronômicas da UNESP/Botucatu, onde leciona as disciplinas de física do curso de graduação em Engenharia de Bioprocessos e Biotecnologia. Participa também lecionando e orientando na pós-graduação em Agronomia, nos programas Energia na Agricultura e Irrigação e Drenagem. Possui experiência nas áreas de energias renováveis, processos de conversão de energia solar e biomassa, modelos de estimativa da radiação solar e da fotossinteticamente ativa, além de estudos sobre métodos de medida da radiação solar difusa.

References

AMORESANO, A., LANGELLA, G. SABINO, S. Optimization of Solar Integration in Biomass Fuelled Steam Plants. Energy Procedia, Amsterdam, v. 81, p. 390-398, 2015. Disponível em: https://www.sciencedirect.com/science/article/pii/S1876610215027575#!. Acesso em: 15 fev. 2022.

BADAOUI, Ouassila. HANINI, Salah; JEBLI, Ahmed ; HADDAD, Brahim; BENHAMOU, Amina. Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models. Renewable Energy, Schenectady, v. 133, p. 144-155, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0960148118312047. Acesso em: 15 fev. 2022.

BANKO, Andrew. J.; VILLAFAÑE, Laura; KIM, Ji Hoon.; ESMAILY, Mahdi.; EATON, John K. Stochastic modeling of direct radiation transmission in particle-laden turbulent flow. Journal of Quantitative Spectroscopy and Radiative Transfer, Oxford, v. 226, p. 1-18, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0022407318306216. Acesso em: 15 fev. 2022.

BANTIKATLA, Himabindu; NULU, Latha Devi S.M.P.; BHOGOJU, Rajinikanth; NARLANKA, Pradyumn; SIDDI, Vinay Reddy; ROYAL, Kranthi Kiran; HYMAVATHI, A. Design and fabrication of hybrid solar silicon PV system. Materials Today: Proceedings, Amsterdam, v. 19, p. 761-766, 2019. Disponível em: https://www.sciencedirect.com/science/article/pii/S221478531933113X. Acesso em: 15 fev. 2022.

BAUMANN, Thomas; NUSSBAUMER, Hartmut; KLENK, Markus; DREISIEBNERB, Andeas; CARIGIETA, Fabian; BAUMGARTNERA, Franz. Photovoltaic systems with vertically mounted bifacial PV modules in combination with green roofs. Solar Energy, Oxford, v. 190, p. 139-146, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0038092X19307844. Acesso em: 15 fev. 2022.

CALCA, Marcus Vinícius Contes, RANIERO, Matheus Rodrigues; FERNANDO, Domingos Mário Zeca; Rodrigues, Sérgio Augusto; DAL PAI, Alexandre. Outliers Detection in a Quality Control Procedure for Measurements of Solar Radiation. IEEE Latin America Transactions, Piscataway, v. 17, n. 11, p. 1815-1822, 2019. Disponível em: https://www.inaoe.mx/~IEEElat/index.php/transactions/article/view/1490. Acesso em: 15 fev. 2022.

CESTARI, Tania; BUSTER, Kesha. Photoprotection in specific populations: Children and people of color. Journal of the American Academy of Dermatology, Philadelphia, v. 76, n. 3, p. S110-S121, 2017. Disponível em: https://www.sciencedirect.com/science/article/pii/S0190962216308817. Acesso em: 15 fev. 2022.

CHAPARRO, David ;VAYREDA, Jordy ; MARTINEZ-VILALTA, Jordi;VALL-LLOSSERA. Mercè; BANQUE, M.; CAMPS, Adriano; PILES, Maria. SMOS and climate data applicability for analyzing forest decline and forest fires (2014) International Geoscience and Remote Sensing Symposium (IGARSS), Piscataway, Art. No. 6946613. Pp. 1069-1072.

CHEN, Zhen; ZHU, Linxiao; WEI, Li; FAN, Shanhui. Simultaneously and Synergistically Harvest Energy from the Sun and Outer Space. Joule, Hertogenbosch, v. 3, n. 1, p. 101-110, 2019. Disponível em: https://www.sciencedirect.com/science/article/pii/S2542435118304719#!. Acesso em: 15 fev. 2022.

CODATO, Georgia; OLIVEIRA, Amauri P.; SOARES, Jacyra; ESCOBEDO, João F.; GOMES, Eduardo Nardini; DAL PAI, Alexandre. Global and diffuse solar irradiances in urban and rural areas in Southeast Brazil, Theoretical and Applied Climatology, Wien, v.93. p.57-73. 2008.

CUCE, Edrem; HARJUNOWIBOWO, Dewanto; CUCE, Pinar Mert. Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review. Renewable and Sustainable Energy Reviews, London, V. 64. p, 34-59, 2016, Disponível em: https://www.sciencedirect.com/science/article/pii/S1364032116301897. Acesso em: 2 abr. 2019.

DESPOTOVIC, Milan; NEDIC, Vladimir. Comparison of optimum tilt angles of solar collectors determined at yearly, seasonal and monthly levels. Energy Conversion and Management, London, v. 97, p. 121-131, 2015. Disponível em: https://www.sciencedirect.com/science/article/pii/S0196890415002721. Acesso em: 15 fev. 2022.

DÍEZ-MEDIAVILLA, Montserrat, RODRÍGUEZ-AMIGO, M.C.; DIESTE-VELASCO, M.I.; GARCÍA-CALDERÓN, T.; ALONSO-TRISTÁN, C. The PV potential of vertical façades: A classic approach using experimental data from Burgos, Spain. Solar Energy, Oxford, v. 177, p. 192-199, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0038092X18311216. Acesso em: 15 fev. 2022.

DONG, Jin; OLAMA, Mohammed M.; KURUGANTI, Teja; MELIN, Alexander M.; DJOUADI, Seddik M.; ZHANG, Yichen ; XUE, Yaosuo. Novel stochastic methods to predict short-term solar radiation and photovoltaic power. Renewable Energy, Schenectady, v. 145, p. 333-346, 2020. Disponível em: https://www.sciencedirect.com/science/article/pii/S0960148119307463. Acesso em: 15 fev. 2022.

EDREIRA, Juan I. Rattalino; MOURTZINIS, Spyridon; AZZARI, George; ANDRADE, José F.; CONLEY, Shawn P.; LOBELL, David; SPECHT, James E.; GRASSINI, Patricio. From sunlight to seed: Assessing limits to solar radiation capture and conversion in agro-ecosystems. Agricultural and Forest Meteorology, Amsterdam, v. 280, p. 107775, 2020. Disponível em: https://www.sciencedirect.com/science/article/pii/S0168192319303910. Acesso em: 15 fev. 2022.

FRANÇOIS, B.; BORGA, D. Z. M. Assessing small hydro/solar power complementarity in ungauged mountainous areas: A crash test study for hydrological prediction methods. Energy, London, v. 127, p. 716-729, 2017. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0360544217304656. Acesso em: 15 fev. 2022.

GONG, Fang-Ying; ZENG, Zhao-Cheng; NG, Edward; NORFORD, Leslie K. Spatiotemporal patterns of street-level solar radiation estimated using Google Street View in a high-density urban environment. Building and Environment, Amsterdam, v. 148, p. 547-566, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0360132318306437. Acesso em: 15 fev. 2022.

GUEYMARD, Christian . A., LARA-FANEGO, Vicente; SENGUPTA, Manajit ; XIE, Yu. Surface albedo and reflectance: Review of definitions, angular and spectral effects, and intercomparison of major data sources in support of advanced solar irradiance modeling over the Americas. Solar Energy, Oxford, v. 182, p. 194-212, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0038092X19301653. Acesso em: 15 fev. 2022.

GUPTA, Anilkumar R.; RATHOD; Virendra, K. Solar radiation as a renewable energy source for the biodiesel production by esterification of palm fatty acid distillate. Energy, London, v. 182, p. 795-801, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0360544219310710. Acesso em: 15 fev. 2022.

HUANG, Junpeng; FAN, Jianhua; FURBO, Simon; CHEN, Daochuan ; DAI, Yanjun; KONG, Weiqiang. Economic analysis and optimization of household solar heating technologies and systems. Sustainable Energy Technologies and Assessments, Amsterdam, v. 36, p. 100532, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S221313881930356X. Acesso em: 15 fev. 2022.

KAASALAINEN, Tapio; MÄKINEN, Antti; LEHTINEN, Taru; MOISIO, Malin; VINHA, Juha. Architectural window design and energy efficiency: Impacts on heating, cooling and lighting needs in Finnish climates. Journal of Building Engineering, Oxford, v. 27, p. 100996, 2020. Disponível em: https://www.sciencedirect.com/science/article/pii/S2352710219303870. Acesso em: 15 fev. 2022.

KHOSRAVI, A.; NUNES, R.O.; ASSAD, M.E.H; MACHADO, L. Comparison of artificial intelligence methods in estimation of daily global solar radiation. Journal of Cleaner Production, Amsterdam, v. 194, p. 342-358, 2018. Disponível em: https://www.sciencedirect.com/science/article/pii/S0959652618314872. Acesso em: 15 fev. 2022.

KOVADLO, Pavel; SHIKHOVTSEV, Artem; LUKIN, Vladimir; KOCHUGOVAC, Elena. Solar activity variations inducing effects of light scattering and refraction in the Earth's atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, Oxford, v. 179, p. 468-471, 2018. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1364682617307216. Acesso em: 15 fev. 2022.

LI, Danny. H.W.; LAM, Tony N.T.; WONG, S.L.; TSANG, Ernest. K. W. Lighting and cooling energy consumption in an open-plan office using solar film coating. Energy, London, v. 33, n. 8, p. 1288-1297, 2008. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0360544208000856. Acesso em: 15 fev. 2022.

LONG, C. N.; DUTTON, E. G. BSRN Global Network Recommended Quality

Control Tests. BSRN Technical Report, v. 2, 2002. Disponível em:

https://epic.awi.de/id/eprint/30083/1/BSRN_recommended_QC_tests_V2.pdf. Acesso em: 26 out. 2018. Acesso em: 15 fev. 2022.

LU, Xinchen; CHENG, Xiao; LI, Xianglan; CHEN, Jiquan; SUN, Minmin; JI, Ming; HE, Hong; WANG, Siyu; LI, Sen; Jianwu. SEASONAL PATTERNS OF CANOPY PHOTOSYNTHESIS CAPTURED BY REMOTELY SENSED SUN-INDUCED fluorescence and vegetation indexes in mid-to-high latitude forests: A cross-platform comparison. Science of The Total Environment, Amsterdam, v. 644, p. 439-451, 2018. Disponível em: https://www.sciencedirect.com/science/article/pii/S0048969718323453. Acesso em: 2 abr. 2020.

MACHETE, Rita, FALCÃO, Ana Paula; GOMES, M. Glória; RODRIGUES , A. Moret. The use of 3D GIS to analyse the influence of urban context on buildings’ solar energy potential. Energy and Buildings, Amsterdam, v. 177, p. 290-302, 2018. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0378778818309587. Acesso em: 15 fev. 2022.

MORENO, Belen; HERNÁNDEZ, Juan A. Analytical solutions to evaluate solar radiation overheating in simplified glazed rooms. Building and Environment, Amsterdam, v. 140, p. 162-172, 2018. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0360132318303032. Acesso em: 15 fev. 2022.

MUNEER, T.; YOUNES, S.; MUNAWWAR. Discourses on solar radiation modeling. Renewable and Sustainable Energy, London, v. 11, p. 551-602, 2007. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1364032105000596. Acesso em: 15 fev. 2022.

OBREGÓN, M.A.; COSTA, M.J.; SILVA, A.M.; SERRANO, A. Impact of aerosol and water vapour on SW radiation at the surface: Sensitivity study and applications. Atmospheric Research, Amsterdam, v. 213, p. 252-263, 2018. Disponível em: https://www.sciencedirect.com/science/article/pii/S0169809518301388. Acesso em: 15 fev. 2022.

OTHMAN, A. B.; BELKILANI, K.; BESBES, M. Global solar radiation on tilted surfaces in Tunisia: Measurement, estimation and gained energy assessments. Energy Reports, Amsterdam, v. 4, p. 101-109, 2018. Disponível em: https://www.sciencedirect.com/science/article/pii/S2352484717301403. Acesso em: 15 fev. 2022.

PENG, Jinqing; CURCIJA, Dragan. C.; THANACHAREONKIT, Anothai; LEE, Eleanor S.; GOUDEY, Howdy; SELKOWITZ, Stephen E. Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window. Applied Energy, Oxford, v. 242, p. 854-872, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S030626191930515X. Acesso em: 15 fev. 2022.

PENG, Jingtang; CHEN, Zhili; ZHENG, Taojie. Study on the design and influence on performance of solar energy heat collection and snow melting device. Applied Thermal Engineering, Oxford, v. 162, p. 114246, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1359431118359210. Acesso em: 15 fev. 2022.

PEREIRA, Júlia; GOMES, M. Glória; RODRIGUES, A. Moret; ALMEIDA, Manuela. Thermal, luminous and energy performance of solar control films in single-glazed windows: Use of energy performance criteria to support decision making. Energy and Buildings, Amsterdam, v. 198, p. 431-443, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0378778819300246. Acesso em: 15 fev. 2022.

POLO, Jesús; BALLESTRÍN, Jesús; CARRA, Elena. Sensitivity study for modelling atmospheric attenuation of solar radiation with radiative transfer models and the impact in solar tower plant production. Solar Energy, Oxford, v. 134, p. 219-227, 2016. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0038092X16300974. Acesso em: 15 fev. 2022.

SCARPA, Federico; BIANCO, Vincenzo; TAGLIAFICO, Luca A. A clear sky physical based solar radiation decomposition model. Thermal Science and Engineering Progress, Amsterdam, v. 6, p. 323-329, 2018. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S2451904917303256. Acesso em: 15 fev. 2022.

SCOLAR, João. Estimativa da irradiação total sobre uma superfície inclinada a partir da irirradiação global na horizontal. 2003. 93 f. Tese (Doutorado em Agronomia/Energia na Agricultura) – Faculdades de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu, 2003.

SINGH, Pushpendra; SHRIVASTAVA. Vipin; KUMAR, Anil. Recent developments in greenhouse solar drying: A review. Renewable and Sustainable Energy Reviews, London, v. 82, p. 3250-3262, 2018. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1364032117313916. Acesso em: 2 abr. 2020.

SOUZA, Adilson Pacheco de. Evoluções, frações e estimativas das irradiações global, direta e difusa em superfícies inclinadas. 2009. xii, 130 f. Dissertação (mestrado) - Universidade Estadual Paulista, Faculdade de Ciências Agronômicas de Botucatu, Botucatu, 2009. Disponível em: http://hdl.handle.net/11449/93773. Acesso em: 15 fev. 2022.

SUN, Huaiwei; ZHAO, Na; ZENG, Xiaofan; YAN Dong. Study of solar radiation prediction and modeling of relationships between solar radiation and meteorological variables. Energy Conversion and Management, London, v. 105, p. 880-890, 2015. Disponível em: https://www.sciencedirect.com/science/article/pii/S0196890415007992. Acesso em: 15 fev. 2022.

SWAMINATHAN, Ashwin; HARRISON, Simone L.; KETHEESAN, N.; BOOGAARD, Christel H. A. VAN DEN; DEAR, Keith; ALLEN, Martin; HART, Prue H.; COOK, Matthew; LUCAS, Robyn M. Exposure to Solar UVR Suppresses Cell-Mediated Immunization Responses in Humans: The Australian Ultraviolet Radiation and Immunity Study. Journal of Investigative Dermatology, Langford Lane, v. 139, n. 7, p. 1545-1553.e6, 2019. Disponível em: https://www.sciencedirect.com/science/article/pii/S0022202X19300296. Acesso em: 6 abr. 2020.

TAO, Qiu-hua; LI, Zhengrong; ZHENG, Jianwen; JIANG, Fujian. A mathematical model for calculating total transmission of solar radiation through shuttle louvers and experimental verification. Energy and Buildings, Amsterdam, v. 172, p. 159-169, 2018. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0378778817320789. Acesso em: 6 abr. 2020.

YANG, Ruiqiao; ZHANG, Huan; YOU, Shijun; ZHENG, Wandong; ZHENG, X.; YE, Tianzhen. Study on the thermal comfort index of solar radiation conditions in winter. Building and Environment, Amsterdam, v. 167, p. 106456, 2020. Disponível em: https://www.sciencedirect.com/science/article/pii/S0360132319306687. Acesso em: 15 fev. 2022.

YEH, Shih-Chuan. High performance natural lighting system combined with SPSC. Renewable Energy, Schenectady, v. 143, p. 226-232, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0960148119306536. Acesso em: 15 fev. 2022.

ZHANG, Huan; YANG, Ruiqia; YOU, Shijun; ZHENG, Wandong; ZHENG, X.; YE, Tianzhen. The CPMV index for evaluating indoor thermal comfort in buildings with solar radiation. Building and Environment, Amsterdam, v. 134, p. 1-9, 2018. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0360132318301094. Acesso em: 15 fev. 2022.

ZHANG, Yixuan; CUI, Ningbo; FENG, Yu; GONG, Daozhi; HU, Xiaotao. Comparison of BP, PSO-BP and statistical models for predicting daily global solar radiation in arid Northwest China. Computers and Electronics in Agriculture, Amsterdam, v. 164, p. 104905, 2019. Disponível em: https://www.sciencedirect.com/science/article/pii/S0168169919304144. Acesso em: 15 fev. 2022.

Published

16/02/2022

How to Cite

Piacitelli Tieghi , C. ., & Dal Pai , A. . (2022). Seasonality of global solar radiation on vertical surface . Brazilian Journal of Climatology, 30(18), 337–359. https://doi.org/10.55761/abclima.v30i18.15578

Issue

Section

Artigos