Human health impacts caused by exposure to forest fires: The evidence obtained in the last two decades
DOI:
https://doi.org/10.55761/abclima.v30i18.15130Keywords:
Incêndios Florestais. Material Particulado. Mudança Climática. Admissões HospitalaresAbstract
The present review was conducted with 27 articles about the association between air pollution episodes before, during and after forest fires and their impacts on public health published from 2000 to 2021. Searches in four platforms (PubMed, Web of Science, Scopus, and Scielo) were carried out. The inclusion criteria were epidemiological studies that analyzed the associations of health outcomes (respiratory and/or cardiovascular diseases hospitalizations) in populations impacted by forest fires with the concentration of particulate matter (PM) emitted by biomass burning. The articles were organized by country and forest fire occurrence, and evidence of health risks to respiratory and cardiovascular diseases were evaluated. Vulnerable populations, such as elderly, blacks and indigenous people, were more susceptible to the impacts of smoke from fires, demonstrating the meaning of understanding the impacts of forest fires smokes on health.
Downloads
References
ABDALA, G. C. Amazônia Brasileira: desafios para uma efetiva política de combate ao desmatamento. 1a ed. Brasília - DF: WWF Iniciativa Amazônia Viva e WWF Brasil, 2015.
ADMINISTRAÇÃO OCEÂNICA E ATMOSFÉRICA DOS ESTADOS UNIDOS DA AMÉRICA. Record-breaking June 2021 heatwave impacts the U.S. West. Disponível em: <https://www.climate.gov/news-features/event-tracker/record-breaking-june-2021-heatwave-impacts-us-west>. Acesso em: 6 jul. 2021.
AGÊNCIA DE PROTEÇÃO AMBIENTAL DOS ESTADOS UNIDOS DA AMÉRICA. What Climate Change means for Colorado. EPA 430-F-16-008, n. August, 2016. Disponível em: < https://19january2017snapshot.epa.gov/sites/production/files/2016-09/documents/climate-change-co.pdf>. Acesso em: 18 jul. 2021.
AGÊNCIA INTERNACIONAL DE PESQUISA EM CÂNCER. Agents Classified by the IARC Monographs , Volumes 1 – 104. IARC Monographs, v. 7, n. 000050, p. 1–25, 2012.
ALMAN, B. L. et al. The association of wildfire smoke with respiratory and cardiovascular emergency department visits in Colorado in 2012: a case crossover study. Enviromental Health, v. 15, n. 62, 2016.
ALVES, G. B. M. et al. Análise ambiental do desmatamento em área de assentamento rural no Cerrado (Mato Grosso, Brasil). Terra Plural, v. 14, n. December, p. 1–13, 2020.
AREA LEÃO PEREIRA, E. J. et al. Brazilian policy and agribusiness damage the Amazon rainforest. Land Use Policy, v. 92, n. January, p. 104491, 2020.
AUNGKULANON, S. et al. Smoking prevalence and attributable deaths in Thailand: Predicting outcomes of different tobacco control interventions. BMC Public Health, v. 19, n. 1, p. 1–11, 2019.
BAKER, J. C. A.; SPRACKLEN, D. V. Climate Benefits of Intact Amazon Forests and the Biophysical Consequences of Disturbance. Frontiers in Forests and Global Change, v. 2, n. August, p. 1–13, 2019.
BORCHERS-ARRIAGADA, N. et al. Unprecedented smoke-related health burden associated with the 2019–20 bushfires in eastern Australia. Medical Journal of Australia, v. 213, n. 6, p. 282–283, 2020.
BRASIL. Decreto Nº 99.274, de 6 de junho de 1990. Regulamenta a Lei nº 6.902, de 27 de abril de 1981, e a Lei nº 6.938, de 31 de agosto de 1981, que dispõem, respectivamente sobre a criação de Estações Ecológicas e Áreas de Proteção Ambiental e sobre a Política Nacional do Meio Ambiente, e dá outras providências. Brasília, DF, 6 de junho de 1990. Disponível em: <http://www.planalto.gov.br/ccivil_03/decreto/antigos/d99274.htm>. Acesso em: 9 jul. 2021.
BRASIL. Resolução CONAMA Nº 267, de 14 de setembro de 2000. Revoga as Resoluções no 13/95 e 229/97 que dispõe sobre a proibição da utilização de substâncias que destroem a Camada de Ozônio. Brasília, DF, 14 de setembro de 2000. Disponível em: <http://conama.mma.gov.br/?option=com_sisconama&task=arquivo.download&id=265>. Acesso em: 9 jul. 2021.
BUTT, E. W. et al. Large air quality and human health impacts due to Amazon forest and vegetation fires. Environmental Research Communications, v. 2, n. 9, p. 095001, 2020.
CHALBOT, M. C.; KAVOURAS, I. G.; DUBOIS, D. W. Assessment of the contribution of wildfires to ozone concentrations in the central US-Mexico border region. Aerosol and Air Quality Research, v. 13, n. 3, p. 838–848, 2013.
CHANG, H. H. et al. Time-series analysis of satellite-derived fine particulate matter pollution and asthma morbidity in Jackson, MS. Environmental Monitoring and Assessment, v. 191, p. 280, 2019.
CHEN, L.; VERRALL, K.; TONG, S. Air particulate pollution due to bushfires and respiratory hospital admissions in Brisbane, Australia. International Journal of Environmental Health Research, v. 16, n. 3, p. 181–191, 2006.
COHEN, A. J. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet, v. 389, n. 10082, p. 1907–1918, 2017.
CONSELHO INDIGENISTA MISSIONÁRIO - BRASIL. Violencia contra os povos indigenas no Brasil - Dados 2018. Disponível em:< www.cimi.org.br>. Acesso em: 12 jul. 2021
CORREIA, L. O. DOS S.; PADILHA, B. M.; VASCONCELOS, S. M. L. Métodos para avaliar a completitude dos dados dos sistemas de informação em saúde do Brasil: Uma revisão sistemática. Ciencia e Saude Coletiva, v. 19, n. 11, p. 4467–4478, 2014.
CRABBE, H. Risk of respiratory and cardiovascular hospitalisation with exposure to bushfire particulates: New evidence from Darwin, Australia. Environmental Geochemistry and Health, v. 34, n. 6, p. 697–709, 2012.
CRIPPA, P. et al. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Scientific Reports, v. 6, n. October, p. 1–9, 2016.
CROCKETT, J. L.; LEROY WESTERLING, A. Greater temperature and precipitation extremes intensify Western U.S. droughts, wildfire severity, and sierra Nevada tree mortality. Journal of Climate, v. 31, n. 1, p. 341–354, 2018.
DE OLIVEIRA ALVES, N. et al. Inflammation response, oxidative stress and DNA damage caused by urban air pollution exposure increase in the lack of DNA repair XPC protein. Environmental International, v. 145, 2020.
DEFLORIO-BARKER, S. et al. Cardiopulmonary effects of fine particulate matter exposure among older adults, during wildfire and non-wildfire periods, in the United States 2008–2010. Environmental Health Perspectives, v. 127, n. 3, p. 1–9, 2019.
DELFINO, R. J. et al. The relationship of respiratory and cardiorespiratory admissions to the southern California wildfires of 2003. Occupational and Environmental Medicine, v. 66, p. 189–197, 2009.
DENNISON, P. et al. Large wildfire trends in the western United States, 1984–2011. Geophysical Research Letters, v. 41, n. April, p. 2928–2933, 2014.
DICKMAN, S. L.; HIMMELSTEIN, D. U.; WOOLHANDLER, S. America: Equity and Equality in Health 1 Inequality and the health-care system in the USA. The Lancet, v. 389, p. 1431–1441, 2017.
DO CARMO, C. N.; HACON, S. DE S. Estudos de séries temporais de poluição atmosférica por queimadas e saúde humana. Ciência e Saude Coletiva, v. 18, n. 11, p. 3245–3258, 2013.
ELLIS, E. C.; BEUSEN, A. H. W.; GOLDEWIJK, K. K. Anthropogenic Biomes: 10,000 BCE to 2015 CE. Land, v. 9, n. 129, 2020.
FAJERSZTAJN, L. et al. Air pollution: A potentially modifiable risk factor for lung cancer. Nature Reviews Cancer, v. 13, n. 9, p. 674–678, 2013.
FERNANDES, V.; CUARTAS, L. A. Secas e os impactos na região sul do brasil. Revista Brasileira de Climatologia, v. 28, n. 17, 2021.
FOROUZANFAR, M. H. et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. The Lancet, v. 386, n. 10010, p. 2287–2323, 2015.
FORSYTH, C. J. et al. The Punishment Gap: Racial/Ethnic Comparisons in School Infractions by Objective and Subjective Definitions. Deviant Behavior, v. 36, n. 4, p. 276–287, 2015.
FRENZEL, A. et al. The aging human body shape. Nature Aging and Mechanism of Disease, v. 6, n. 5, 2020.
FUNDO MUNDIAL PARA A NATUREZA-BRASIL. Acesso à energia com fontes renováveis em regiões remotas no Brasil: lições aprendidas e recomendações, 2020. Disponível em: <https://www.wwf.org.br/?76422/Acesso-a-energia-com-fontes-renovaveis-em-regioes-remotas-no-brasil>. Acesso em: 24 jun.2021
FUNDO MUNDIAL PARA A NATUREZA-BRASIL. The dry season begins with record fires and devastation on the rise in the Amazon and Cerrado | WWF Brasil, 2021. Disponível em: https://www.wwf.org.br/?78788/The-dry-season-begins-with-record-fires-and-devastation-on-the-rise-in-the-Amazon-and-Cerrado>. Acesso em: 7 jul. 2021
FUNDO MUNDIAL PARA A NATUREZA-TAILÂNDIA. 2020 Northern Thailand forest fires snapshot. Disponível em: <https://www.wwf.or.th/?362337/2020-Northern-Thailand-forest-fires-snapshot>. Acesso em: 7 jul. 2021.
GEIRINHAS, J. L. et al. Climatic and synoptic characterization of heat waves in Brazil. International Journal of Climatology, v. 38, n. 4, p. 1760–1776, 2018.
GONÇALVES, K. DOS S. Cardiovascular diseases and the exposure to particulate air pollutants derived from forest fires in Porto Velho municipality, Rondônia state, Brazilian amazon rain forest region. [s.l.] FIOCRUZ, 2016.
GOVERNO DOS TERRITÓRIOS DO NOROESTE CANADENSE. 14.3 Annual area burned and number of fires report. [s.l: s.n.]. Disponível em: <https://www.enr.gov.nt.ca/en/state-environment/143-annual-area-burned-and-number-fires>. Acesso em: 2 jul. 2021.
GREENPEACE. Cultivando Violência. [s.l: s.n.]. Disponível em: <https://www.greenpeace.org/static/planet4-brasil-stateless/2019/12/0e135bff-relatorio_cultivando_violencia.pdf>.
GUERRA, A. et al. The importance of Legal Reserves for protecting the Pantanal biome and preventing agricultural losses. Journal of Environmental Management, v. 260, n. October 2019, 2020.
HAIKERWAL, A. et al. Impact of Fine Particulate Matter (PM2.5) Exposure During Wildfires on Cardiovascular Health Outcomes. Journal of the American Heart Association, v. 4, p. e001653, 2015.
HANIGAN, I. C.; JOHNSTON, F. H.; MORGAN, G. G. Vegetation fire smoke, indigenous status and cardio-respiratory hospital admissions in Darwin, Australia, 1996-2005: A time-series study. Environmental Health: A Global Access Science Source, v. 7, p. 1–12, 2008.
HÄNNINEN, O. O. et al. Population exposure to fine particles and estimated excess mortality in Finland from an East European wildfire episode. Journal of Exposure Science and Environmental Epidemiology, v. 19, n. 4, p. 414–422, 2009.
HANSEN, M. C. et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, v. 342, n. November, p. 850–854, 2013.
HENDERSON, S. B. et al. Three measures of forest fire smoke exposure and their associations with respiratory and cardiovascular health outcomes in a population-based cohort. Environmental Health Perspectives, v. 119, n. 9, p. 1266–1271, 2011.
HERRICKS, J. R. et al. The Global Burden of Disease Study 2013 : What does it mean for the NTDs ? PLOS Neglected Tropical Diseases. PLoS Negl Trop Dis, v. 11, n. 8, p. 1–21, 2017.
HOWARD, C. et al. SOS! Summer of Smoke: a retrospective cohort study examining the cardiorespiratory impacts of a severe and prolonged wildfire season in Canada’s high subarctic. BMJ Open, v. 11, p. 37029, 2021.
HULLEY, G. C.; DOUSSET, B.; KAHN, B. H. Rising Trends in Heatwave Metrics Across Southern California. Earth’s Future, v. 8, n. 7, 1 jul. 2020.
HUTCHINSON, J. A. et al. The San Diego 2007 wildfires and Medi-Cal emergency department presentations, inpatient hospitalizations, and outpatient visits: An observational study of smoke exposure periods and a bidirectional case-crossover analysis. PLoS Medicine, v. 15, n. 7, p. e1002601, 2018a.
HUTCHINSON, J. A. et al. The San Diego 2007 wildfires and Medi-Cal emergency department presentations, inpatient hospitalizations, and outpatient visits: An observational study of smoke exposure periods and a bidirectional case-crossover analysis. PLoS Medicine, v. 15, n. 7, p. e1002601, 2018b.
HYDER, M.; JÖNSSON, J. Å. Aerosols , Sampling and Sample Treatment Methods : A Review and State of the Art. Air Pollution and Pollutants, n. February 2014, p. 295–316, 2015.
IGNOTTI, E. et al. Air pollution and hospital admissions for respiratory diseases in the subequatorial amazon: A time series approach. Cadernos de Saude Publica, v. 26, n. 4, p. 747–761, 2010a.
IGNOTTI, E. . et al. Impact on human health of particulate matter emitted from burnings in the Brazilian Amazon region [Impactos na saúde humana de partículas emitidas por queimadas na Amazônia Brasileira]. Revista de Saude Publica, v. 44, n. 1, p. 121–130, 2010b.
INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. Desmatamento Amazônia. Disponível em: <http://www.inpe.br/faq/index.php?pai=6>. Acesso em: 5 jul. 2021.
IRIGARAY, C. T. et al. O pantanal matogrossense enquanto patrimônio nacional no contexto das mudanças climaticas. Mudanças do clima: desafios jurídicos, econômicos e socioambientais, n. January, p. 53–103, 2011.
JACOBSON, L. D. S. V. et al. Acute effects of particulate matter and black carbon from seasonal fires on peak expiratory flow of schoolchildren in the Brazilian Amazon. PLoS ONE, v. 9, n. 8, 2014.
JACOBSON, L. DA S. V. et al. Association between fine particulate matter and the peak expiratory flow of schoolchildren in the Brazilian subequatorial Amazon: A panel study. Environmental Research, v. 117, p. 27–35, 2012.
JOHNSTON, F. H. et al. Ambient biomass smoke and cardio-respiratory hospital admissions in Darwin, Australia. BMC Public Health, v. 7, n. 240, 2007.
KHAYKIN, S. et al. The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Communications Earth & Environment, v. 1, n. 1, p. 1–12, 2020.
KIGUCHI, M. et al. A review of climate-change impact and adaptation studies for the water sector in Thailand. Environmental Research Letters, v. 16, p. 023004, 2021.
KIM, S.; SINCLAIR, V. A. Heat waves in Finland : present and projected summertime extreme temperatures and their associated circulation patterns. International Journal of Climatology, v. 1408, n. September 2017, p. 1393–1408, 2018.
KLOOG, I. et al. A new hybrid spatio-temporal model for estimating daily multi-year PM2.5 concentrations across northeastern USA using high resolution aerosol optical depth data. Atmospheric Environment, v. 95, p. 581–590, 2014.
KOLLANUS, V. et al. Effects of long-range transported air pollution from vegetation fires on daily mortality and hospital admissions in the Helsinki metropolitan area, Finland. Environmental Research, v. 151, p. 351–358, 2016.
KOLLANUS, V.; LANKI, T. Mortality effects of prolonged heat waves in Finland. Environmental Health Perspectives, 2013. Disponível em: <https://ehp.niehs.nih.gov/doi/10.1289/isee.2013.P-2-12-19>. Acesso em: 7 jul. 2021
KOMAN, P. D. et al. Mapping Modeled Exposure of Wildland Fire Smoke for Human Health Studies in California. Atmosphere, v. 10, n. 308, p. 1–20, 2019.
KUZNETSOV, G. V. et al. Ignition of the wood biomass particles under conditions of near-surface fragmentation of the fuel layer. Fuel, v. 252, n. February, p. 19–36, 2019.
LAING, J.; BINYAMIN, J. Climate Change Effect on Winter Temperature and Precipitation of Yellowknife, Northwest Territories, Canada from 1943 to 2011. American Journal of Climate Change, v. 02, n. 04, p. 275–283, 2013.
LEAL FILHO, W. et al. Fire in Paradise: Why the Pantanal is burning. Environmental Science & Policy, v. 123, n. November 2020, p. 31–34, 2021.
LIU, J. C. et al. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environmental Research, v. 136, p. 120–132, 2015.
LIU, J. C. et al. Who among the Elderly Is Most Vulnerable to Exposure to and Health Risks of Fine Particulate Matter from Wildfire Smoke? American Journal of Epidemiology, v. 186, n. 6, p. 730–735, 2017.
LIU, J. C. et al. Wildfire-specific Fine Particulate Matter and Risk of Hospital Admissions in Urban and Rural Counties. Epidemiology, v. 176, n. 1, p. 139–148, 2018.
LOVEJOY, T. E.; NOBRE, C. Amazon Tipping Point. Science, v. 4, p. eaat2340, 2018.
MACHIN, A. B. et al. Effects of exposure to fine particulate matter in elderly hospitalizations due to respiratory diseases in the South of the Brazilian Amazon. Brazilian Journal of Medical and Biological Research, v. 52, n. 2, p. e8130, 2019.
MARCOVITCH, J.; PINSKY, V. Bioma Amazônia: atos e fatos. Estudos Avancados, v. 34, n. 100, p. 83–106, 2020.
MARTIN, K. L. et al. Air pollution from bushfires and their association with hospital admissions in Sydney, Newcastle and Wollongong, Australia 1994-2007. Australian and New Zeland Journal of Public Health, v. 37, n. 3, 2013.
MASCARENHAS, M. D. M. et al. Anthropogenic air pollution and respiratory disease-related emergency room visits in Rio Branco, Brazil - September, 2005. Jornal Brasileiro de Pneumologia, v. 34, n. 1, p. 42–46, 2008.
MIKATI, I. et al. Disparities in distribution of particulate matter emission sources by race and poverty status. American Journal of Public Health, v. 108, n. 4, p. 480–485, 1 abr. 2018.
MINISTÉRIO DO MEIO AMBIENTE DO CANADÁ. Indicators of Climate Change for British Columbia: 2016. Ministry of Environment and Climate Change Strategy, National Library of Canada. [s.l: s.n.]. Disponível em: <https://www2.gov.bc.ca/assets/gov/environment/research-monitoring-and-reporting/reporting/envreportbc/archived-reports/climate-change/climatechangeindicators-13sept2016_final.pdf%0Ahttp://www.gov.bc.ca/wlap>.
MORGAN, G. et al. Effects of bushfire smoke on daily mortality and hospital admissions in Sydney, Australia. Epidemiology, v. 21, n. 1, p. 47–55, 2010.
MUELLER, W. et al. Ambient particulate matter and biomass burning: An ecological time series study of respiratory and cardiovascular hospital visits in northern Thailand. Environmental Health: A Global Access Science Source, v. 19, n. 1, p. 1–12, 2020.
NEUMANN, J. E. et al. Estimating PM2.5-related premature mortality and morbidity associated with future wildfire emissions in the western US. Environmental Research Letters, v. 16, p. 035019, 2021.
NIEMI, J. V. et al. Characterization of aerosol particle episodes in Finland caused by wildfires in Eastern Europe. Atmospheric Chemistry and Physics, v. 5, n. 8, p. 2299–2310, 2005.
NOBRE, C. A.; MARENGO, J. A.; SOARES, W. R. Climate Change Risks in Brazil. [s.l.] Springer Nature, 2019.
ORGANIZAÇÃO METEOROLÓGICA MUNDIAL. Statement on the Status of the Global Climate in 2017. [s.l: s.n.]. Disponível em: <https://library.wmo.int/doc_num.php?explnum_id=4453#:~:text=Global%20mean%20temperatures%20in%202017,by%20an%20El%20Ni%C3%B1o%20event>. Acesso em: 23 jun. 2021
ORGANIZAÇÃO METEOROLÓGICA MUNDIAL. The State of the Global Climate 2020. [s.l: s.n.]. Disponível em: <https://public.wmo.int/en/our-mandate/climate/wmo-statement-state-of-global-climate>. Acesso em: 24 jun. 2021.
ORGANIZAÇÃO MUNDIAL DA SAÚDE. Air Quality Guidelines. 2ª ed., Copenhagen. WHO Regional Publications, European Series. 2000.
OUIMETTE, J. R. et al. Evaluating the PurpleAir monitor as an aerosol light scattering instrument. Atmospheric Measurement Techniques, n. June, p. 1–35, 2021.
PAINEL INTERGOVERNAMENTAL SOBRE MUDANÇAS CLIMÁTICAS. Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, 2020. [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.- O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press
PAINEL INTERGOVERNAMENTAL SOBRE MUDANÇAS CLIMÁTICAS. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis, 2021. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.
PAUSAS, J. G.; KEELEY, J. E. Wildfires as an ecosystem service. Front Ecol Environ, v. 17, n. 5, p. 289–295, 2019.
PIO, C. A. et al. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment, v. 42, n. 32, p. 7530–7543, 2008.
PODUR, J.; WOTTON, M. Will climate change overwhelm fire management capacity? Ecological Modelling, v. 221, n. 9, p. 1301–1309, 2010.
RAPPOLD, A. G. et al. Cardio-respiratory outcomes associated with exposure to wildfire smoke are modified by measures of community health. Enviromental Health, v. 11, n. 71, 2012.
REID, C. E. et al. Differential respiratory health effects from the 2008 northern California wildfires: A spatiotemporal approach. Environmental Research, v. 150, p. 227–235, 2016.
REID, C. E.; MAESTAS, M. M. Wildfire smoke exposure under climate change: impact on respiratory health of affected communities. Curr Opin Pulm Med, v. 25, n. 2, p. 179–187, 2019.
RODOPOULOU, S. et al. Air pollution and hospital emergency room and admissions for cardiovascular and respiratory diseases in Doña Ana County, New Mexico. Environmental Research, v. 129, p. 39–46, 2014.
RODRIGUES, P. C. DE O. et al. Climatic variability and morbidity and mortality associated with particulate matter. Revista de saude publica, v. 51, p. 91, 2017.
SEINFELD, J. H.; PANDIS, S. N. Atmospheric chemistry and physics : from air pollution to climate change. [s.l.] Wiley, 2016.
SONTER, L. J. et al. Mining drives extensive deforestation in the Brazilian Amazon. Nature Communications, v. 8, n. 1, p. 1–7, 2017.
STOWELL, J. D. et al. Associations of wildfire smoke PM 2.5 exposure with cardiorespiratory events in Colorado 2011-2014. Environment International, v. 133, p. 105151, 2019.
TESSUM, C. W. et al. PM2.5 polluters disproportionately and systemically affect people of color in the United States. Sci. Adv, v. 7, p. 4491–4519, 2021.
THAM, R. et al. The impact of smoke on respiratory hospital outcomes during the 2002-2003 bushfire season, Victoria, Australia. Respirology, v. 14, n. 1, p. 69–75, 2009.
THELEN, B. et al. Modeling acute respiratory illness during the 2007 San Diego wildland fires using a coupled emissions-transport system and generalized additive modeling. Enviromental Health, v. 12, n. 94, 2013.
TINLING, M. A. et al. Repeating cardiopulmonary health effects in rural North Carolina population during a second large peat wildfire. Enviromental Health, v. 15, n. 12, p. 1–12, 2016.
TOMASI, C. et al. Aerosol and Climate Change: Direct and Indirect Aerosol Effects on Climate. In: TOMASI, C.; FUZZI, S.; KOKHANOVSKY, A. (Eds.). . Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate. [s.l.] Wiley-VCH, 2017. p. 437–551.
TRICCO, A. C. et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, v. 169, n. 7, p. 467–473, 2018.
VILLÉN-PÉREZ, S. et al. Brazilian Amazon gold: indigenous land rights under risk. Elem Sci Anth, v. 8, 2020.
WEICHENTHAL, S. et al. Oxidative burden of fine particulate air pollution and risk of cause-specific mortality in the Canadian Census Health and Environment Cohort (CanCHEC). Environmental Research, v. 146, n. April, p. 92–99, 2016.
WEICHENTHAL, S. et al. Biomass Burning as a Source of Ambient Fine Particulate Air Pollution and Acute Myocardial Infarction. Epidemiology, v. 28, n. 3, p. 329–337, 2017.
WEICHENTHAL, S. et al. Within-City Spatial Variations in Multiple Measures of PM 2.5 Oxidative Potential in Toronto, Canada. Environmental Science and Technology, v. 53, n. 5, p. 2799–2810, 2019.
WEILNHAMMER, V. et al. Extreme weather events in europe and their health consequences – A systematic review. International Journal of Hygiene and Environmental Health, v. 233, n. January, p. 113688, 2021.
WILLIAMS, A. P. et al. Observed Impacts of Anthropogenic Climate Change on Wildfire in California. Earth’s Future, v. 7, p. 892–910, 2019.
WOO, S. H. L. et al. Air pollution from wildfires and human health vulnerability in Alaskan communities under climate change. Environmental Research Letters, v. 15, n. 9, 2020.
YAO, J. et al. Sub-Daily Exposure to Fine Particulate Matter and Ambulance Dipatches during Wildfire Seasons: A Case-Crossover Study in British Columbia, Canada. Enviromental Health Perspective, v. 128, n. 6, 2020.
YU, P. et al. Bushfires in Australia: a serious health emergency under climate change. The Lancet Planetary Health, v. 4, n. 1, p. e7–e8, 2020.
ZEMP, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nature Communications, v. 8, 2017.
Downloads
Published
How to Cite
Issue
Section
License
A aprovação dos artigos implica a aceitação imediata e sem ônus de que a Revista Brasileira de Climatologia terá exclusividade na primeira publicação do artigo. Os autores continuarão, não obstante, a deter os direitos autorais. Os autores autorizam também que seus artigos sejam disponibilizados em todos os indexadores aos quais a revista está vinculada.
Os autores mantém seus direitos de publicação sem restrições
A Comissão Editorial não se responsabiliza pelos conceitos ou afirmações expressos nos trabalhos publicados, que são de inteira responsabilidade dos autores.
A Revista Brasileira de Climatologia oferece acesso livre imediato ao seu conteúdo, seguindo o entendimento de que disponibilizar gratuitamente o conhecimento científico ao público proporciona maior democratização do conhecimento e tende a produzir maior impacto dos artigos publicados. Os artigos publicados na revista são disponibilizados segundo a Licença Creative Commons CC-BY-NC 4.0 (https://creativecommons.org/licenses/by-nc/4.0/). Segundo essa licença é permitido acessar, distribuir e reutilizar os artigos para fins não comerciais desde que citados os autores e a fonte. Ao submeter artigos à Revista Brasileira de Climatologia, os autores concordam em tornar seus textos legalmente disponíveis segundo essa licença