Classification of the cyclone types over the South Atlantic Ocean in projections with RegCM4 and GCMs
DOI:
https://doi.org/10.55761/abclima.v30i18.14603Keywords:
Transição tropical. Ciclones tropicais. Ciclones extratropicais. Mudanças climáticas.Abstract
This study aims to classify the types of cyclones in the South Atlantic Ocean in three projections of the Regional Climate Model (RegCM4), as well as of the global models (GCMs) that provide the boundary conditions for the regional, and to identify systems that transition to tropical (TT). The climatic scenario used is RCP8.5. Classification of cyclone types uses three algorithms: the first to identify and track cyclones in the South Atlantic Ocean based on relative vorticity at 925 hPa; the second to provide thermal characteristics of cyclones through the Cyclone Phase Space methodology and the third to separate cyclones based on their thermal characteristics. Considering the period 2020-2050 (2051-2080), the GCMs and RegCM4 ensembles project a slight reduction (increase) in the frequency of tropical cyclones when compared to the present climate (1979-2005). For extratropical cyclones, there is a negative trend in their frequency. One of the initial hypotheses of this study was that in a warming scenario, there would be an increase in the number of TT, however the results obtained do not indicate a change in their frequency since in present and future climates the number of transitions is ~ 2.8 systems per decade in both ensemble.
Downloads
References
ANDRELINA, B.; REBOITA, M.S. Climatology of the Tropical Cyclone Genesis Potential Index in the Oceans Adjacent to South America. Anuário do Instituto de Geociências da UFRJ, v. 44, p. 39515, 2021.
BENTLEY, A. M.; METZ, N. D. Tropical transition of an unnamed, high-latitude, tropical cyclone over the eastern North Pacific. Monthly Weather Review, v. 144, n. 2, p. 713-736, 2016.
CAMARGO, S. J. Global and regional aspects of tropical cyclone activity in the CMIP5 models. Journal of Climate, v. 26, n.24, p. 9880-9902, 2013.
CAMARGO, S. J. et al. Testing the performance of tropical cyclone genesis indices in future climates using the HiRAM model. Journal of Climate, p. 27, v. 24, p. 9171-9196, 2014.
CATTO, J. L. et al. The future of midlatitude cyclones. Current Climate Change Reports, v. 5, n. 4, p. 407-420, 2019.
CHANG, M. et al. The tropical transition in the western North Pacific: the case of tropical cyclone Peipah (2007). Journal of Geophysical Research: Atmospheres, v. 124, n. 10, p. 5151-5165, 2019.
CHANG, M. et al. Multiday evolution of convective bursts during western North Pacific tropical cyclone development and nondevelopment using geostationary satellite measurements. Journal of Geophysical Research: Atmospheres, v. 122, n. 3, p. 1635-1649, 2017.
COLLINS, W. J. et al. Development and evaluation of an Earth-System model–HadGEM2. Geoscientific Model Development, v. 4, n. 4, p. 1051-1075, 2011.
DA ROCHA, R. P. et al. Subtropical cyclones over the oceanic basins: a review. Annals of the New York Academy of Sciences, v. 1436, n. 1, p. 138-156, 2019.
DAVIS, C. A.; BOSART, L. F. The formation of hurricane Humberto (2001): The importance of extra‐tropical precursors. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, v. 132, n. 619, p. 2055-2085, 2006.
DAVIS, C. A.; BOSART, L. F. The TT problem: Forecasting the tropical transition of cyclones. Bulletin of the American Meteorological Society, v. 85, n. 11, p. 1657-1662, 2004.
DE JESUS, E. M. et al. Multi-model climate projections of the main cyclogenesis hot-spots and associated winds over the eastern coast of South America. Climate Dynamics, v. 56, p.537-557, 2021a.
DE JESUS, E. M. et al. Future climate trends of subtropical cyclones in the South Atlantic basin in an ensemble of global and regional projections. Climate Dynamics, 2021b.
DEE, D. P. et al. The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, v. 137, n. 656, p. 553-597, 2011.
DIAS PINTO, J. R., REBOITA, M. S., DA ROCHA, R. P. Synoptic and dynamical analysis of subtropical cyclone Anita (2010) and its potential for tropical transition over the South Atlantic Ocean. Journal of Geophysical Research: Atmospheres, v. 118, n. 19, p. 10-870, 2013.
DUNNE, J. P. et al. GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. Journal of climate, v. 25, n. 19, p. 6646-6665, 2012.
DUTRA, L. M. M. et al. Structure and evolution of subtropical cyclone Anita as evaluated by heat and vorticity budgets. Quarterly Journal of the Royal Meteorological Society, v. 143, n. 704, p. 1539-1553, 2017.
EMANUEL, K. A. The dependence of hurricane intensity on climate. Nature, v. 326, n. 6112, p. 483-485, 1987.
EMANUEL, K.A. A scheme for representing cumulus convection in large-scale models. Journal of the Atmospheric Sciences, v. 48, n. 21, p. 2313-2329, 1991.
EMANUEL, K.A. Tropical cyclones. Annual review of earth and planetary sciences, v. 31, n. 1, p. 75-104, 2003.
EVANS, J. L.; BRAUN, A. A climatology of subtropical cyclones in the South Atlantic. Journal of Climate, v. 25, n. 21, p. 7328-7340, 2012.
FRANCO, B. C. et al. Climate change impacts on the atmospheric circulation, ocean, and fisheries in the southwest South Atlantic Ocean: a review. Climatic Change, v. 162, n. 4, p. 2359-2377, 2020.
GAN, M. A.; RAO, V. B. Surface cyclogenesis over South America. Monthly Weather Review, v. 119, n. 5, p. 1293-1302, 1991.
GIORGETTA, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems, v. 5, n. 3, p. 572-597, 2013.
GOZZO, L. F. et al. Climatology and numerical case study of moisture sources associated with subtropical cyclogenesis over the southwestern Atlantic Ocean. Journal of Geophysical Research: Atmospheres, v. 122, n. 11, p. 5636-5653, 2017.
GOZZO, L. F. et al. Subtropical cyclones over the southwestern South Atlantic: Climatological aspects and case study. Journal of Climate, v. 27, n. 22, p. 8543-8562, 2014.
GRAY, W. M. Global view of the origin of tropical disturbances and storms. Atmospheric Sciences Papers, v. 114,112p, 1968.
HART, R. E. A cyclone phase space derived from thermal wind and thermal asymmetry. Monthly Weather Review, v. 131, n. 4, p. 585-616, 2003.
HODGES, K.; COBB, A.; VIDALE, P. L. How well are tropical cyclones represented in reanalysis datasets?. Journal of Climate, v. 30, n. 14, p. 5243-5264, 2017.
JULLIEN, S. et al. Impact of tropical cyclones on the heat budget of the South Pacific Ocean. Journal of physical oceanography, v. 42, n. 11, p. 1882-1906, 2012.
LAUTON, G. et al. Metocean modulators of the first recorded South Atlantic Hurricane: Catarina. Geophysical Research Letters, [S.I.], 2021.
MARTIUS, O.; RIVIÈRE, G. Rossby wave breaking: Climatology, interaction with low-frequency climate variability, and links to extreme weather events. In LI, J. SWINBANK, R.; GROTJAHN, R.; VOLKERT, H. (Eds.), Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events (Special Publications of the International Union of Geodesy and Geophysics, pp. 69-78). Cambridge: Cambridge University Press.
MCTAGGART-COWAN, R. et al. Analysis of hurricane Catarina (2004). Monthly Weather Review, v. 134, n. 11, p. 3029-3053, 2006.
MCTAGGART-COWAN, R. et al. Climatology of tropical cyclogenesis in the North Atlantic (1948–2004). Monthly Weather Review, v. 136, n. 4, p. 1284-1304, 2008.
MCTAGGART-COWAN, R. et al. A global climatology of baroclinically influenced tropical cyclogenesis. Monthly Weather Review, v. 141, n. 6, p. 1963-1989, 2013.
PEZZA, A. B.; SIMMONDS, I. The first South Atlantic hurricane: unprecedented blocking, low shear and climate change. Geophysical Research Letters, v. 32, n. 15, 2005.
PORTMANN, R.; SPRENGER, M.; WERNLI, H. The three-dimensional life cycles of potential vorticity cutoffs: A global and selected regional climatologies in ERA-Interim (1979–2018). Weather and Climate Dynamics, v. 2, n. 2, p. 507-534, 2021.
REBOITA, M. S.; AMARO, T. R.; DE SOUZA, M. R. Winds: intensity and power density simulated by RegCM4 over South America in present and future climate. Climate Dynamics, v. 51, n. 1, p. 187-205, 2018b.
REBOITA, M. S. et al. Iba: the first pure tropical cyclogenesis over the western South Atlantic Ocean. Journal of Geophysical Research: Atmospheres, v. 126, e2020JD033431, 2021.
REBOITA, M. S. et al. Trend and teleconnection patterns in the climatology of extratropical cyclones over the Southern Hemisphere. Climate Dynamics, v. 45, n. 7-8, p. 1929-1944, 2015.
REBOITA, M. S. et al. South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Climate Dynamics, v. 35, n. 7-8, p. 1331-1347, 2010.
REBOITA, M. S. et al. Extratropical cyclones over the southwestern South Atlantic Ocean: HadGEM2‐ES and RegCM4 projections. International Journal of Climatology, v. 38, n. 6, p. 2866-2879, 2018a.
REBOITA, M. S.; DA ROCHA, R. P.; OLIVEIRA, D. M. D. Key features and adverse weather of the named subtropical cyclones over the Southwestern South Atlantic Ocean. Atmosphere, v. 10(1), n. 6, 2019b.
REBOITA, M. S. et al. Ciclones em Superfície nas Latitudes Austrais: Parte I-Revisão Bibliográfica. Revista Brasileira de Meteorologia, v. 32, n. 2, p. 171-186, 2017.
REBOITA, M. S. et al. Entendendo o Tempo e o Clima na América do Sul. TerraE Didática, v. 8, n. 1, p. 34-50, 2012.
REBOITA, M. S. et al. Subtropical cyclone Anita's potential to tropical transition under warmer sea surface temperature scenarios. Geophysical Research Letters, v. 46, n. 14, p. 8484-8489, 2019a.
REBOITA, M. S. et al. Future Changes in the Wintertime Cyclonic Activity over the CORDEX-CORE Southern Hemisphere domains in a Multi-Model Approach. Climate Dynamics, v. 20, p. 1-17, 2020.
SHAPIRO, M. A.; KEYSER, D. A. Fronts, jet streams, and the tropopause. NOAA Tech. Memo. ERL-WPL-182, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Wave Propagation Laboratory, 75 pp. 1990.
VAN VUUREN, D. P. et al. The representative concentration pathways: an overview. Climatic change, v. 109, n. 1, p. 5-31, 2011.
YANASE, W. et al. Parameter spaces of environmental fields responsible for cyclone development from tropics to extratropics. Journal of Climate, v. 27, p. 652– 671, 2014.
YUE, S. et al. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological processes, v. 16, n. 9, p. 1807-1829, 2002.
Downloads
Published
How to Cite
Issue
Section
License
A aprovação dos artigos implica a aceitação imediata e sem ônus de que a Revista Brasileira de Climatologia terá exclusividade na primeira publicação do artigo. Os autores continuarão, não obstante, a deter os direitos autorais. Os autores autorizam também que seus artigos sejam disponibilizados em todos os indexadores aos quais a revista está vinculada.
Os autores mantém seus direitos de publicação sem restrições
A Comissão Editorial não se responsabiliza pelos conceitos ou afirmações expressos nos trabalhos publicados, que são de inteira responsabilidade dos autores.
A Revista Brasileira de Climatologia oferece acesso livre imediato ao seu conteúdo, seguindo o entendimento de que disponibilizar gratuitamente o conhecimento científico ao público proporciona maior democratização do conhecimento e tende a produzir maior impacto dos artigos publicados. Os artigos publicados na revista são disponibilizados segundo a Licença Creative Commons CC-BY-NC 4.0 (https://creativecommons.org/licenses/by-nc/4.0/). Segundo essa licença é permitido acessar, distribuir e reutilizar os artigos para fins não comerciais desde que citados os autores e a fonte. Ao submeter artigos à Revista Brasileira de Climatologia, os autores concordam em tornar seus textos legalmente disponíveis segundo essa licença