Padrões Climáticos dos Extremos Chuvosos em Uberlândia - MG

Authors

DOI:

https://doi.org/10.55761/abclima.v31i18.15630

Keywords:

ZCAS. ENOS. Precipitação pluvial. Minas Gerais.

Abstract

Minas Gerais is the state with the highest annual frequency of hydrological natural disasters in the Southeast Region of Brazil, especially in the summer, precisely because it is the wettest period of the year. Thus, the objective of this study is to investigate the climate patterns related to rainy extremes in Uberlândia - MG during the summer (1980-2015), since this is the second most populous municipality in the state and the fourth most populous municipality in the interior of Brazil. The results show that the rainy extremes (90% percentile) in Uberlândia are mainly related to the South Atlantic Convergence Zone (SACZ) and the El Niño events. In December, El Niño events and equatorial Pacific warming (Niño 3 and Niño 4 regions) dominate. In addition, the intensification of the South America low-level jet between the Amazon and Minas Gerais, due to the strengthening of the North Atlantic Subtropical High, favors an increase in anomalous convection. In January, El Niño events predominate, as well as a cyclonic circulation at 850-hPa between São Paulo and Minas Gerais, and oceanic SACZ action. In February, Central Pacific-El Niño events dominate, as well as a trough at medium levels/ cyclonic circulation at 850-hPa over the central-south part of the country, with increased convection in the SACZ.

Downloads

Download data is not yet available.

Author Biography

Camila Bertoletti Carpenedo, Departamento de Solos e Engenharia Agrícola, Universidade Federal do Paraná (UFPR)

Doutora (02/2017) e mestre (05/2012) em Ciências com ênfase em Meteorologia pelo Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo (IAG/USP). Bacharel em Geografia (12/2009) pela Universidade Federal do Rio Grande do Sul (UFRGS). Atuou como Professora no Curso de Graduação em Licenciatura em Ciências da USP/UNIVESP (2013-2015) e como Professora Adjunta nos Cursos de Graduação em Geografia e Gestão em Saúde Ambiental da Universidade Federal de Uberlândia (2017-2021). Também atuou como Especialista em Climatologia na CPFL Renováveis (2016). Atualmente é Professora Adjunta do Departamento de Solos e Engenharia Agrícola da Universidade Federal do Paraná (UFPR), coordenadora do NUVEM - Núcleo de Estudos sobre Variabilidade e Mudanças Climáticas (UFPR), Docente Permanente do Programa de Pós-Graduação em Engenharia Ambiental (UFPR), Docente Colaboradora do Programa de Pós-Graduação em Ciência do Solo (UFPR), pesquisadora do Interdisciplinary Climate Investigation Center (INCLINE/USP), do Grupo de Estudos Climáticos (GrEC/IAG/USP), do Centro Polar e Climático (UFRGS), do Grupo de Estudo e Pesquisa em Climatologia do Cerrado (UFJ), do Laboratório de Estudos e Modelagem Climática (LACLIMA/UFMA) e do INCT da Criosfera. Tem experiência na área de Geociências, com ênfase em Climatologia, Interação Oceano-Criosfera-Atmosfera, Gelo Marinho, Teleconexões, Variabilidade Climática, Mudanças Climáticas e Eventos Extremos.

References

AGUIAR, L. F.; CATALDI, M. Social and environmental vulnerability in Southeast Brazil associated with the South Atlantic Convergence Zone. Natural Hazards, v. 109, p. 2423-2437, 2021. https://doi.org/10.1007/s11069-021-04926-z

BOMBARDI, R. J. et al. Precipitation over eastern South America and the South Atlantic Sea surface temperature during neutral ENSO periods. Climate Dynamics, v. 42, p. 1553-1568, 2014. https://doi.org/10.1007/s00382-013-1832-7

CAI, W. et al. Climate impacts of the El Niño – Southern Oscillation on South America. Nature Reviews Earth Environ, v. 1, p. 215-231, 2020. https://doi.org/10.1038/s43017-020-0040-3

CARVALHO, L. M. V.; JONES, C.; LIEBMANN, B. The South Atlantic Convergence Zone: Intensity, Form, Persistence, and Relationships with Intraseasonal to Interannual Activity and Extreme Rainfall. Journal of Climate, v. 17, p. 88-108, 2004. https://doi.org/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2

CASARIN, D. P.; KOUSKY, V. E. Anomalias de precipitação no sul do Brasil e variações na circulação atmosférica. Revista Brasileira de Meteorologia, v. 1, p. 83-90, 1986.

DALAGNOL, R. et al. Extreme rainfall and its impacts in the Brazilian Minas Gerais state in January 2020: Can we blame climate change? Climate Resilience and Sustainability, v. 1, n. 1, e15, 2021. https://doi.org/10.1002/cli2.15

GAN, M. A.; KOUSKY, V. E.; ROPELEWSKI, C. F. The South America monsoon circulation and its relationship to rainfall over West-Central Brazil. Journal of Climate, v. 17, p. 47-66, 2004. https://doi.org/10.1175/1520-0442(2004)017<0047:TSAMCA>2.0.CO;2

GRIMM, A. M.; TEDESCHI, R. G. ENSO and Extreme Rainfall Events in South America. Journal of Climate, v. 22, n. 7, p. 1589-1609, 2009. https://doi.org/10.1175/2008JCLI2429.1

GRIMM, A. M. Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stochastic Environmental Research and Risk Assessment, v. 25, p. 537-554, 2011. https://doi.org/10.1007/s00477-010-0420-1

HERSBACH H et al. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, v. 146, p. 1999-2049, 2020. https://doi.org/10.1002/qj.3803

HIRATA, F. E.; GRIMM, A. M. The role of synoptic and intraseasonal anomalies in the life cycle of summer rainfall extremes over South America. Climate Dynamics, v. 46, p. 3041-3055, 2016. https://doi.org/10.1007/s00382-015-2751-6

HUANG, B. et al. Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. Journal of Climate, v. 30, p. 8179-8205, 2017. https://doi.org/10.1175/JCLI-D-16-0836.1

IBGE. Estatísticas Sociais: IBGE divulga as estimativas da população dos municípios para 2019. Rio de Janeiro: IBGE, 2022a. Disponível em: https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/25278-ibge-divulga-as-estimativas-da-populacao-dos-municipios-para-2019. Acesso em: 10 de mai. 2022.

IBGE. Estimativas da População. Rio de Janeiro: IBGE, 2022b. Disponível em: https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-populacao.html?=&t=downloads. Acesso em: 26 de jan. 2022.

ITO, E. R. K. Um estudo climatológico do anticiclone subtropical do Atlântico Sul e sua possível influência em sistemas frontais. 1999. Dissertação (Mestrado em Meteorologia) – Universidade de São Paulo, São Paulo, 1999.

KOUSKY, V. E.; ROPELEWSKI, C. F. The tropospheric seasonally varying mean climate over the Western Hemisphere (1975-1995). NCEP/Climate Prediction Center Atlas, n. 3, 1997. 135 p.

LIEBMANN, B.; SMITH, C. A. Description of a Complete (Interpolated) Outgoing Longwave Radiation Dataset. Bulletin of the American Meteorological Society, v. 77, p. 1275-1277, 1996.

LIMA, K. C.; SATYAMURTY, P.; FERNANDEZ, J. P. R. Large-scale atmospheric conditions associated with heavy rainfall episodes in Southeast Brazil. Theoretical and Applied Climatology, v. 101, p. 121-135, 2010. https://doi.org/10.1007/s00704-009-0207-9

MARSHALL, G. J. Trends in the Southern Annular Mode from observations and reanalyses. Journal of Climate, v. 16, p. 4134-4143, 2003. https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2

KOBIYAMA, M. et al. Prevenção de desastres naturais: conceitos básicos. Curitiba: Organic Trading, 2006. 109 p. ISBN 85-87755-03-X

LIMA, M. P.; CARPENEDO, C. B. Eventos extremos secos em Uberlândia-MG e circulação atmosférica associada. Revista Brasileira de Climatologia, v. 27, p. 158-180, 2020. http://dx.doi.org/10.5380/abclima.v27i0.70256

MONTINI, T. L.; JONES, C.; CARVALHO, L. M. V. The South American low-level jet: a new climatology, variability, and changes. Journal of Geophysical Research: Atmospheres, v. 124, n. 3, p. 1200-1218, 2019. https://doi.org/10.1029/2018JD029634

MUZA, M. N. et al. Intraseasonal and Interannual Variability of Extreme Dry and Wet Events over Southeastern South America and the Subtropical Atlantic during Austral Summer. Journal of Climate, v. 22, n. 7, p. 1682-1699, 2009. https://doi.org/10.1175/2008JCLI2257.1

NNAMCHI, H. C.; LI, J. P. Influence of the South Atlantic Ocean Dipole on West African summer precipitation. Journal of Climate, v. 24, p. 1184-1197, 2011. https://doi.org/10.1175/2010JCLI3668.1

NNAMCHI, H. C.; LI, J. P.; ANYADIKE, R.N.C. Does a dipole mode really exist in the South Atlantic Ocean? Journal of Geophysical Research: Atmospheres, v. 116, 2011. https://doi.org/10.1029/2010JD015579

NOGUÉS-PAEGLE, J.; MO, K. C. Alternating wet and dry conditions over South America during summer. Monthly Weather Review, v. 125, p. 279-291, 1997. https://doi.org/10.1175/1520-0493(1997)125<0279:AWADCO>2.0.CO;2

PBMC. Mudanças Climáticas e Cidades. Relatório Especial do Painel Brasileiro de Mudanças Climáticas [Ribeiro, S.K., Santos, A.S. (Eds.)]. PBMC, COPPE – UFRJ. Rio de Janeiro, Brasil. 116 p., 2016.

PETRUCCI, E. Características do clima de Uberlândia-MG: análise da temperatura, precipitação e umidade relativa. 2018. Dissertação (Mestrado em Geografia) – Universidade Federal de Uberlândia, Uberlândia, 2018. Disponível em: https://repositorio.ufu.br/bitstream/123456789/20810/4/CaracteristicasClimaUberlandia.pdf. Acesso em: 10 mai. 2022.

PNAD. Pesquisa nacional por amostra de domicílios: síntese de indicadores - 2015. Rio de Janeiro: IBGE, 2016. 108 p. ISBN 978-85-240-4398-7

RAO, V. B.; CAVALCANTI, I. F. A.; HADA, K. Annual variation of rainfall over Brazil and water vapor characteristics over South America. Journal of Geophysical Research: Atmospheres, v. 101, p. 539-551, 1996. https://doi.org/10.1029/96JD01936

S2ID. Sistema Integrado de Informações sobre Desastres. Brasil: Secretaria Nacional de Proteção e Defesa Civil. Disponível em: https://s2id.mdr.gov.br/. Acesso em: 31 de jan. 2022.

SENEVIRATNE, S. I. et al. Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V. et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1513-1766, 2021. https://doi.org/10.1017/9781009157896.013

VAN STORCH, H.; ZWIERS, F. W. Statistical Analysis in Climate Research. Cambridge University Press, UK, 1999.

VASCONCELLOS, F. C.; CAVALCANTI, I. F. A. Extreme precipitation over Southeastern Brazil in the austral summer and relations with the Southern Hemisphere annular mode. Atmospheric Science Letters, v. 11, p. 21-26, 2010. https://doi.org/10.1002/asl.247

VERA, C. et al. Towards a unified view of the American Monsoon systems. Journal of Climate, v. 19, p. 4977-5000, 2006. https://doi.org/10.1175/JCLI3896.1

WILKS, D. S. Statistical Methods in the Atmospheric Sciences - An Introduction. 2 ed. Academic Press, New York, 2006.

XAVIER, A. C.; KING, C. W.; SCANLON, B. R. Daily gridded meteorological variables in Brazil (1980-2013). International Journal of Climatology, v. 36, n. 6, p. 2644-2659, 2016. https://doi.org/10.1002/joc.4518

XAVIER, A. C.; KING, C. W.; SCANLON, B. R. An update of Xavier, King and Scanlon (2016) daily precipitation gridded data set for the Brazil. In: XVIII Simpósio Brasileiro de Sensoriamento Remoto - SBSR, 2017, Santos, SP. Anais [...]. Santos, SP, v. 1, p. 562-569, 2017.

ZILLI, M. T.; CARVALHO, L. M. V.; LIEBMANN, B.; SILVA DIAS, M. A. A comprehensive analysis of trends in extreme precipitation over southeastern coast of Brazil. International Journal of Climatology, v. 37, n. 5, p. 2269-2279, 2017. https://doi.org/10.1002/joc.4840

Published

25/10/2022

How to Cite

Carpenedo, C. B., & de Paula Lima, M. (2022). Padrões Climáticos dos Extremos Chuvosos em Uberlândia - MG. Brazilian Journal of Climatology, 31(18), 486–508. https://doi.org/10.55761/abclima.v31i18.15630

Issue

Section

Artigos