Impactos na saúde humana causados pela exposição a incêndios florestais: as evidências obtidas nas últimas duas décadas
DOI:
https://doi.org/10.55761/abclima.v30i18.15130Palavras-chave:
Incêndios Florestais. Material Particulado. Mudança Climática. Admissões HospitalaresResumo
Foi feita uma revisão de 27 artigos publicados entre 2000 e 2021 sobre a associação entre poluição do ar em episódios pré, durante e pós incêndios florestais e os impactos sobre a saúde da população, a partir de busca nas plataformas PubMed, Web of Science, Scopus e Scielo. Os critérios adotados para inclusão dos artigos foram estudos epidemiológicos que analisassem as associações entre desfechos na saúde (hospitalizações por doenças respiratórios e/ou cardiovasculares) em populações impactadas por incêndios florestais e a concentração de material particulado (MP) decorrente dos incêndios. Os artigos foram organizados por país e data da ocorrência dos incêndios, e foram analisadas as evidências de riscos à saúde por doenças respiratórias e cardiovasculares. Populações mais vulneráveis, como idosos, negros e indígenas, apresentaram maior susceptibilidade aos impactos da fumaça de incêndios, demonstrando a importância de compreender os impactos da fumaça dos incêndios florestais para a saúde.
Downloads
Referências
ABDALA, G. C. Amazônia Brasileira: desafios para uma efetiva política de combate ao desmatamento. 1a ed. Brasília - DF: WWF Iniciativa Amazônia Viva e WWF Brasil, 2015.
ADMINISTRAÇÃO OCEÂNICA E ATMOSFÉRICA DOS ESTADOS UNIDOS DA AMÉRICA. Record-breaking June 2021 heatwave impacts the U.S. West. Disponível em: <https://www.climate.gov/news-features/event-tracker/record-breaking-june-2021-heatwave-impacts-us-west>. Acesso em: 6 jul. 2021.
AGÊNCIA DE PROTEÇÃO AMBIENTAL DOS ESTADOS UNIDOS DA AMÉRICA. What Climate Change means for Colorado. EPA 430-F-16-008, n. August, 2016. Disponível em: < https://19january2017snapshot.epa.gov/sites/production/files/2016-09/documents/climate-change-co.pdf>. Acesso em: 18 jul. 2021.
AGÊNCIA INTERNACIONAL DE PESQUISA EM CÂNCER. Agents Classified by the IARC Monographs , Volumes 1 – 104. IARC Monographs, v. 7, n. 000050, p. 1–25, 2012.
ALMAN, B. L. et al. The association of wildfire smoke with respiratory and cardiovascular emergency department visits in Colorado in 2012: a case crossover study. Enviromental Health, v. 15, n. 62, 2016. DOI: https://doi.org/10.1186/s12940-016-0146-8
ALVES, G. B. M. et al. Análise ambiental do desmatamento em área de assentamento rural no Cerrado (Mato Grosso, Brasil). Terra Plural, v. 14, n. December, p. 1–13, 2020. DOI: https://doi.org/10.5212/TerraPlural.v.14.2015189.060
AREA LEÃO PEREIRA, E. J. et al. Brazilian policy and agribusiness damage the Amazon rainforest. Land Use Policy, v. 92, n. January, p. 104491, 2020. DOI: https://doi.org/10.1016/j.landusepol.2020.104491
AUNGKULANON, S. et al. Smoking prevalence and attributable deaths in Thailand: Predicting outcomes of different tobacco control interventions. BMC Public Health, v. 19, n. 1, p. 1–11, 2019. DOI: https://doi.org/10.1186/s12889-019-7332-x
BAKER, J. C. A.; SPRACKLEN, D. V. Climate Benefits of Intact Amazon Forests and the Biophysical Consequences of Disturbance. Frontiers in Forests and Global Change, v. 2, n. August, p. 1–13, 2019. DOI: https://doi.org/10.3389/ffgc.2019.00047
BORCHERS-ARRIAGADA, N. et al. Unprecedented smoke-related health burden associated with the 2019–20 bushfires in eastern Australia. Medical Journal of Australia, v. 213, n. 6, p. 282–283, 2020. DOI: https://doi.org/10.5694/mja2.50545
BRASIL. Decreto Nº 99.274, de 6 de junho de 1990. Regulamenta a Lei nº 6.902, de 27 de abril de 1981, e a Lei nº 6.938, de 31 de agosto de 1981, que dispõem, respectivamente sobre a criação de Estações Ecológicas e Áreas de Proteção Ambiental e sobre a Política Nacional do Meio Ambiente, e dá outras providências. Brasília, DF, 6 de junho de 1990. Disponível em: <http://www.planalto.gov.br/ccivil_03/decreto/antigos/d99274.htm>. Acesso em: 9 jul. 2021.
BRASIL. Resolução CONAMA Nº 267, de 14 de setembro de 2000. Revoga as Resoluções no 13/95 e 229/97 que dispõe sobre a proibição da utilização de substâncias que destroem a Camada de Ozônio. Brasília, DF, 14 de setembro de 2000. Disponível em: <http://conama.mma.gov.br/?option=com_sisconama&task=arquivo.download&id=265>. Acesso em: 9 jul. 2021.
BUTT, E. W. et al. Large air quality and human health impacts due to Amazon forest and vegetation fires. Environmental Research Communications, v. 2, n. 9, p. 095001, 2020. DOI: https://doi.org/10.1088/2515-7620/abb0db
CHALBOT, M. C.; KAVOURAS, I. G.; DUBOIS, D. W. Assessment of the contribution of wildfires to ozone concentrations in the central US-Mexico border region. Aerosol and Air Quality Research, v. 13, n. 3, p. 838–848, 2013. DOI: https://doi.org/10.4209/aaqr.2012.08.0232
CHANG, H. H. et al. Time-series analysis of satellite-derived fine particulate matter pollution and asthma morbidity in Jackson, MS. Environmental Monitoring and Assessment, v. 191, p. 280, 2019. DOI: https://doi.org/10.1007/s10661-019-7421-4
CHEN, L.; VERRALL, K.; TONG, S. Air particulate pollution due to bushfires and respiratory hospital admissions in Brisbane, Australia. International Journal of Environmental Health Research, v. 16, n. 3, p. 181–191, 2006. DOI: https://doi.org/10.1080/09603120600641334
COHEN, A. J. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet, v. 389, n. 10082, p. 1907–1918, 2017. DOI: https://doi.org/10.1016/S0140-6736(17)30505-6
CONSELHO INDIGENISTA MISSIONÁRIO - BRASIL. Violencia contra os povos indigenas no Brasil - Dados 2018. Disponível em:< www.cimi.org.br>. Acesso em: 12 jul. 2021
CORREIA, L. O. DOS S.; PADILHA, B. M.; VASCONCELOS, S. M. L. Métodos para avaliar a completitude dos dados dos sistemas de informação em saúde do Brasil: Uma revisão sistemática. Ciencia e Saude Coletiva, v. 19, n. 11, p. 4467–4478, 2014. DOI: https://doi.org/10.1590/1413-812320141911.02822013
CRABBE, H. Risk of respiratory and cardiovascular hospitalisation with exposure to bushfire particulates: New evidence from Darwin, Australia. Environmental Geochemistry and Health, v. 34, n. 6, p. 697–709, 2012. DOI: https://doi.org/10.1007/s10653-012-9489-4
CRIPPA, P. et al. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Scientific Reports, v. 6, n. October, p. 1–9, 2016. DOI: https://doi.org/10.1038/srep37074
CROCKETT, J. L.; LEROY WESTERLING, A. Greater temperature and precipitation extremes intensify Western U.S. droughts, wildfire severity, and sierra Nevada tree mortality. Journal of Climate, v. 31, n. 1, p. 341–354, 2018. DOI: https://doi.org/10.1175/JCLI-D-17-0254.1
DE OLIVEIRA ALVES, N. et al. Inflammation response, oxidative stress and DNA damage caused by urban air pollution exposure increase in the lack of DNA repair XPC protein. Environmental International, v. 145, 2020. DOI: https://doi.org/10.1016/j.envint.2020.106150
DEFLORIO-BARKER, S. et al. Cardiopulmonary effects of fine particulate matter exposure among older adults, during wildfire and non-wildfire periods, in the United States 2008–2010. Environmental Health Perspectives, v. 127, n. 3, p. 1–9, 2019. DOI: https://doi.org/10.1289/EHP3860
DELFINO, R. J. et al. The relationship of respiratory and cardiorespiratory admissions to the southern California wildfires of 2003. Occupational and Environmental Medicine, v. 66, p. 189–197, 2009. DOI: https://doi.org/10.1136/oem.2008.041376
DENNISON, P. et al. Large wildfire trends in the western United States, 1984–2011. Geophysical Research Letters, v. 41, n. April, p. 2928–2933, 2014. DOI: https://doi.org/10.1002/2014GL059576
DICKMAN, S. L.; HIMMELSTEIN, D. U.; WOOLHANDLER, S. America: Equity and Equality in Health 1 Inequality and the health-care system in the USA. The Lancet, v. 389, p. 1431–1441, 2017. DOI: https://doi.org/10.1016/S0140-6736(17)30398-7
DO CARMO, C. N.; HACON, S. DE S. Estudos de séries temporais de poluição atmosférica por queimadas e saúde humana. Ciência e Saude Coletiva, v. 18, n. 11, p. 3245–3258, 2013. DOI: https://doi.org/10.1590/S1413-81232013001100015
ELLIS, E. C.; BEUSEN, A. H. W.; GOLDEWIJK, K. K. Anthropogenic Biomes: 10,000 BCE to 2015 CE. Land, v. 9, n. 129, 2020. DOI: https://doi.org/10.3390/land9050129
FAJERSZTAJN, L. et al. Air pollution: A potentially modifiable risk factor for lung cancer. Nature Reviews Cancer, v. 13, n. 9, p. 674–678, 2013. DOI: https://doi.org/10.1038/nrc3572
FERNANDES, V.; CUARTAS, L. A. Secas e os impactos na região sul do brasil. Revista Brasileira de Climatologia, v. 28, n. 17, 2021. DOI: https://doi.org/10.5380/rbclima.v28i0.74717
FOROUZANFAR, M. H. et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. The Lancet, v. 386, n. 10010, p. 2287–2323, 2015.
FORSYTH, C. J. et al. The Punishment Gap: Racial/Ethnic Comparisons in School Infractions by Objective and Subjective Definitions. Deviant Behavior, v. 36, n. 4, p. 276–287, 2015. DOI: https://doi.org/10.1080/01639625.2014.935623
FRENZEL, A. et al. The aging human body shape. Nature Aging and Mechanism of Disease, v. 6, n. 5, 2020. DOI: https://doi.org/10.1038/s41514-020-0043-9
FUNDO MUNDIAL PARA A NATUREZA-BRASIL. Acesso à energia com fontes renováveis em regiões remotas no Brasil: lições aprendidas e recomendações, 2020. Disponível em: <https://www.wwf.org.br/?76422/Acesso-a-energia-com-fontes-renovaveis-em-regioes-remotas-no-brasil>. Acesso em: 24 jun.2021
FUNDO MUNDIAL PARA A NATUREZA-BRASIL. The dry season begins with record fires and devastation on the rise in the Amazon and Cerrado | WWF Brasil, 2021. Disponível em: https://www.wwf.org.br/?78788/The-dry-season-begins-with-record-fires-and-devastation-on-the-rise-in-the-Amazon-and-Cerrado>. Acesso em: 7 jul. 2021
FUNDO MUNDIAL PARA A NATUREZA-TAILÂNDIA. 2020 Northern Thailand forest fires snapshot. Disponível em: <https://www.wwf.or.th/?362337/2020-Northern-Thailand-forest-fires-snapshot>. Acesso em: 7 jul. 2021.
GEIRINHAS, J. L. et al. Climatic and synoptic characterization of heat waves in Brazil. International Journal of Climatology, v. 38, n. 4, p. 1760–1776, 2018. DOI: https://doi.org/10.1002/joc.5294
GONÇALVES, K. DOS S. Cardiovascular diseases and the exposure to particulate air pollutants derived from forest fires in Porto Velho municipality, Rondônia state, Brazilian amazon rain forest region. [s.l.] FIOCRUZ, 2016.
GOVERNO DOS TERRITÓRIOS DO NOROESTE CANADENSE. 14.3 Annual area burned and number of fires report. [s.l: s.n.]. Disponível em: <https://www.enr.gov.nt.ca/en/state-environment/143-annual-area-burned-and-number-fires>. Acesso em: 2 jul. 2021.
GREENPEACE. Cultivando Violência. [s.l: s.n.]. Disponível em: <https://www.greenpeace.org/static/planet4-brasil-stateless/2019/12/0e135bff-relatorio_cultivando_violencia.pdf>.
GUERRA, A. et al. The importance of Legal Reserves for protecting the Pantanal biome and preventing agricultural losses. Journal of Environmental Management, v. 260, n. October 2019, 2020. DOI: https://doi.org/10.1016/j.jenvman.2020.110128
HAIKERWAL, A. et al. Impact of Fine Particulate Matter (PM2.5) Exposure During Wildfires on Cardiovascular Health Outcomes. Journal of the American Heart Association, v. 4, p. e001653, 2015. DOI: https://doi.org/10.1161/JAHA.114.001653
HANIGAN, I. C.; JOHNSTON, F. H.; MORGAN, G. G. Vegetation fire smoke, indigenous status and cardio-respiratory hospital admissions in Darwin, Australia, 1996-2005: A time-series study. Environmental Health: A Global Access Science Source, v. 7, p. 1–12, 2008. DOI: https://doi.org/10.1186/1476-069X-7-42
HÄNNINEN, O. O. et al. Population exposure to fine particles and estimated excess mortality in Finland from an East European wildfire episode. Journal of Exposure Science and Environmental Epidemiology, v. 19, n. 4, p. 414–422, 2009. DOI: https://doi.org/10.1038/jes.2008.31
HANSEN, M. C. et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, v. 342, n. November, p. 850–854, 2013. DOI: https://doi.org/10.1126/science.1244693
HENDERSON, S. B. et al. Three measures of forest fire smoke exposure and their associations with respiratory and cardiovascular health outcomes in a population-based cohort. Environmental Health Perspectives, v. 119, n. 9, p. 1266–1271, 2011. DOI: https://doi.org/10.1289/ehp.1002288
HERRICKS, J. R. et al. The Global Burden of Disease Study 2013 : What does it mean for the NTDs ? PLOS Neglected Tropical Diseases. PLoS Negl Trop Dis, v. 11, n. 8, p. 1–21, 2017. DOI: https://doi.org/10.1371/journal.pntd.0005424
HOWARD, C. et al. SOS! Summer of Smoke: a retrospective cohort study examining the cardiorespiratory impacts of a severe and prolonged wildfire season in Canada’s high subarctic. BMJ Open, v. 11, p. 37029, 2021. DOI: https://doi.org/10.1136/bmjopen-2020-037029
HULLEY, G. C.; DOUSSET, B.; KAHN, B. H. Rising Trends in Heatwave Metrics Across Southern California. Earth’s Future, v. 8, n. 7, 1 jul. 2020. DOI: https://doi.org/10.1029/2020EF001480
HUTCHINSON, J. A. et al. The San Diego 2007 wildfires and Medi-Cal emergency department presentations, inpatient hospitalizations, and outpatient visits: An observational study of smoke exposure periods and a bidirectional case-crossover analysis. PLoS Medicine, v. 15, n. 7, p. e1002601, 2018a.
HUTCHINSON, J. A. et al. The San Diego 2007 wildfires and Medi-Cal emergency department presentations, inpatient hospitalizations, and outpatient visits: An observational study of smoke exposure periods and a bidirectional case-crossover analysis. PLoS Medicine, v. 15, n. 7, p. e1002601, 2018b. DOI: https://doi.org/10.1371/journal.pmed.1002601
HYDER, M.; JÖNSSON, J. Å. Aerosols , Sampling and Sample Treatment Methods : A Review and State of the Art. Air Pollution and Pollutants, n. February 2014, p. 295–316, 2015.
IGNOTTI, E. et al. Air pollution and hospital admissions for respiratory diseases in the subequatorial amazon: A time series approach. Cadernos de Saude Publica, v. 26, n. 4, p. 747–761, 2010a. DOI: https://doi.org/10.1590/S0102-311X2010000400017
IGNOTTI, E. . et al. Impact on human health of particulate matter emitted from burnings in the Brazilian Amazon region [Impactos na saúde humana de partículas emitidas por queimadas na Amazônia Brasileira]. Revista de Saude Publica, v. 44, n. 1, p. 121–130, 2010b. DOI: https://doi.org/10.1590/S0034-89102010000100013
INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. Desmatamento Amazônia. Disponível em: <http://www.inpe.br/faq/index.php?pai=6>. Acesso em: 5 jul. 2021.
IRIGARAY, C. T. et al. O pantanal matogrossense enquanto patrimônio nacional no contexto das mudanças climaticas. Mudanças do clima: desafios jurídicos, econômicos e socioambientais, n. January, p. 53–103, 2011.
JACOBSON, L. D. S. V. et al. Acute effects of particulate matter and black carbon from seasonal fires on peak expiratory flow of schoolchildren in the Brazilian Amazon. PLoS ONE, v. 9, n. 8, 2014. DOI: https://doi.org/10.1371/journal.pone.0104177
JACOBSON, L. DA S. V. et al. Association between fine particulate matter and the peak expiratory flow of schoolchildren in the Brazilian subequatorial Amazon: A panel study. Environmental Research, v. 117, p. 27–35, 2012. DOI: https://doi.org/10.1016/j.envres.2012.05.006
JOHNSTON, F. H. et al. Ambient biomass smoke and cardio-respiratory hospital admissions in Darwin, Australia. BMC Public Health, v. 7, n. 240, 2007. DOI: https://doi.org/10.1186/1471-2458-7-240
KHAYKIN, S. et al. The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Communications Earth & Environment, v. 1, n. 1, p. 1–12, 2020. DOI: https://doi.org/10.1038/s43247-020-00022-5
KIGUCHI, M. et al. A review of climate-change impact and adaptation studies for the water sector in Thailand. Environmental Research Letters, v. 16, p. 023004, 2021. DOI: https://doi.org/10.1088/1748-9326/abce80
KIM, S.; SINCLAIR, V. A. Heat waves in Finland : present and projected summertime extreme temperatures and their associated circulation patterns. International Journal of Climatology, v. 1408, n. September 2017, p. 1393–1408, 2018. DOI: https://doi.org/10.1002/joc.5253
KLOOG, I. et al. A new hybrid spatio-temporal model for estimating daily multi-year PM2.5 concentrations across northeastern USA using high resolution aerosol optical depth data. Atmospheric Environment, v. 95, p. 581–590, 2014. DOI: https://doi.org/10.1016/j.atmosenv.2014.07.014
KOLLANUS, V. et al. Effects of long-range transported air pollution from vegetation fires on daily mortality and hospital admissions in the Helsinki metropolitan area, Finland. Environmental Research, v. 151, p. 351–358, 2016. DOI: https://doi.org/10.1016/j.envres.2016.08.003
KOLLANUS, V.; LANKI, T. Mortality effects of prolonged heat waves in Finland. Environmental Health Perspectives, 2013. Disponível em: <https://ehp.niehs.nih.gov/doi/10.1289/isee.2013.P-2-12-19>. Acesso em: 7 jul. 2021 DOI: https://doi.org/10.1289/isee.2013.P-2-12-19
KOMAN, P. D. et al. Mapping Modeled Exposure of Wildland Fire Smoke for Human Health Studies in California. Atmosphere, v. 10, n. 308, p. 1–20, 2019. DOI: https://doi.org/10.3390/atmos10060308
KUZNETSOV, G. V. et al. Ignition of the wood biomass particles under conditions of near-surface fragmentation of the fuel layer. Fuel, v. 252, n. February, p. 19–36, 2019. DOI: https://doi.org/10.1016/j.fuel.2019.03.126
LAING, J.; BINYAMIN, J. Climate Change Effect on Winter Temperature and Precipitation of Yellowknife, Northwest Territories, Canada from 1943 to 2011. American Journal of Climate Change, v. 02, n. 04, p. 275–283, 2013. DOI: https://doi.org/10.4236/ajcc.2013.24027
LEAL FILHO, W. et al. Fire in Paradise: Why the Pantanal is burning. Environmental Science & Policy, v. 123, n. November 2020, p. 31–34, 2021. DOI: https://doi.org/10.1016/j.envsci.2021.05.005
LIU, J. C. et al. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environmental Research, v. 136, p. 120–132, 2015. DOI: https://doi.org/10.1016/j.envres.2014.10.015
LIU, J. C. et al. Who among the Elderly Is Most Vulnerable to Exposure to and Health Risks of Fine Particulate Matter from Wildfire Smoke? American Journal of Epidemiology, v. 186, n. 6, p. 730–735, 2017. DOI: https://doi.org/10.1093/aje/kwx141
LIU, J. C. et al. Wildfire-specific Fine Particulate Matter and Risk of Hospital Admissions in Urban and Rural Counties. Epidemiology, v. 176, n. 1, p. 139–148, 2018.
LOVEJOY, T. E.; NOBRE, C. Amazon Tipping Point. Science, v. 4, p. eaat2340, 2018. DOI: https://doi.org/10.1126/sciadv.aat2340
MACHIN, A. B. et al. Effects of exposure to fine particulate matter in elderly hospitalizations due to respiratory diseases in the South of the Brazilian Amazon. Brazilian Journal of Medical and Biological Research, v. 52, n. 2, p. e8130, 2019. DOI: https://doi.org/10.1590/1414-431x20188130
MARCOVITCH, J.; PINSKY, V. Bioma Amazônia: atos e fatos. Estudos Avancados, v. 34, n. 100, p. 83–106, 2020. DOI: https://doi.org/10.1590/s0103-4014.2020.34100.007
MARTIN, K. L. et al. Air pollution from bushfires and their association with hospital admissions in Sydney, Newcastle and Wollongong, Australia 1994-2007. Australian and New Zeland Journal of Public Health, v. 37, n. 3, 2013. DOI: https://doi.org/10.1111/1753-6405.12065
MASCARENHAS, M. D. M. et al. Anthropogenic air pollution and respiratory disease-related emergency room visits in Rio Branco, Brazil - September, 2005. Jornal Brasileiro de Pneumologia, v. 34, n. 1, p. 42–46, 2008. DOI: https://doi.org/10.1590/S1806-37132008000100008
MIKATI, I. et al. Disparities in distribution of particulate matter emission sources by race and poverty status. American Journal of Public Health, v. 108, n. 4, p. 480–485, 1 abr. 2018. DOI: https://doi.org/10.2105/AJPH.2017.304297
MINISTÉRIO DO MEIO AMBIENTE DO CANADÁ. Indicators of Climate Change for British Columbia: 2016. Ministry of Environment and Climate Change Strategy, National Library of Canada. [s.l: s.n.]. Disponível em: <https://www2.gov.bc.ca/assets/gov/environment/research-monitoring-and-reporting/reporting/envreportbc/archived-reports/climate-change/climatechangeindicators-13sept2016_final.pdf%0Ahttp://www.gov.bc.ca/wlap>.
MORGAN, G. et al. Effects of bushfire smoke on daily mortality and hospital admissions in Sydney, Australia. Epidemiology, v. 21, n. 1, p. 47–55, 2010. DOI: https://doi.org/10.1097/EDE.0b013e3181c15d5a
MUELLER, W. et al. Ambient particulate matter and biomass burning: An ecological time series study of respiratory and cardiovascular hospital visits in northern Thailand. Environmental Health: A Global Access Science Source, v. 19, n. 1, p. 1–12, 2020. DOI: https://doi.org/10.1186/s12940-020-00629-3
NEUMANN, J. E. et al. Estimating PM2.5-related premature mortality and morbidity associated with future wildfire emissions in the western US. Environmental Research Letters, v. 16, p. 035019, 2021. DOI: https://doi.org/10.1088/1748-9326/abe82b
NIEMI, J. V. et al. Characterization of aerosol particle episodes in Finland caused by wildfires in Eastern Europe. Atmospheric Chemistry and Physics, v. 5, n. 8, p. 2299–2310, 2005. DOI: https://doi.org/10.5194/acp-5-2299-2005
NOBRE, C. A.; MARENGO, J. A.; SOARES, W. R. Climate Change Risks in Brazil. [s.l.] Springer Nature, 2019. DOI: https://doi.org/10.1007/978-3-319-92881-4
ORGANIZAÇÃO METEOROLÓGICA MUNDIAL. Statement on the Status of the Global Climate in 2017. [s.l: s.n.]. Disponível em: <https://library.wmo.int/doc_num.php?explnum_id=4453#:~:text=Global%20mean%20temperatures%20in%202017,by%20an%20El%20Ni%C3%B1o%20event>. Acesso em: 23 jun. 2021
ORGANIZAÇÃO METEOROLÓGICA MUNDIAL. The State of the Global Climate 2020. [s.l: s.n.]. Disponível em: <https://public.wmo.int/en/our-mandate/climate/wmo-statement-state-of-global-climate>. Acesso em: 24 jun. 2021.
ORGANIZAÇÃO MUNDIAL DA SAÚDE. Air Quality Guidelines. 2ª ed., Copenhagen. WHO Regional Publications, European Series. 2000.
OUIMETTE, J. R. et al. Evaluating the PurpleAir monitor as an aerosol light scattering instrument. Atmospheric Measurement Techniques, n. June, p. 1–35, 2021. DOI: https://doi.org/10.5194/amt-2021-170
PAINEL INTERGOVERNAMENTAL SOBRE MUDANÇAS CLIMÁTICAS. Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, 2020. [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.- O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press
PAINEL INTERGOVERNAMENTAL SOBRE MUDANÇAS CLIMÁTICAS. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis, 2021. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.
PAUSAS, J. G.; KEELEY, J. E. Wildfires as an ecosystem service. Front Ecol Environ, v. 17, n. 5, p. 289–295, 2019. DOI: https://doi.org/10.1002/fee.2044
PIO, C. A. et al. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment, v. 42, n. 32, p. 7530–7543, 2008. DOI: https://doi.org/10.1016/j.atmosenv.2008.05.032
PODUR, J.; WOTTON, M. Will climate change overwhelm fire management capacity? Ecological Modelling, v. 221, n. 9, p. 1301–1309, 2010. DOI: https://doi.org/10.1016/j.ecolmodel.2010.01.013
RAPPOLD, A. G. et al. Cardio-respiratory outcomes associated with exposure to wildfire smoke are modified by measures of community health. Enviromental Health, v. 11, n. 71, 2012. DOI: https://doi.org/10.1186/1476-069X-11-71
REID, C. E. et al. Differential respiratory health effects from the 2008 northern California wildfires: A spatiotemporal approach. Environmental Research, v. 150, p. 227–235, 2016. DOI: https://doi.org/10.1016/j.envres.2016.06.012
REID, C. E.; MAESTAS, M. M. Wildfire smoke exposure under climate change: impact on respiratory health of affected communities. Curr Opin Pulm Med, v. 25, n. 2, p. 179–187, 2019. DOI: https://doi.org/10.1097/MCP.0000000000000552
RODOPOULOU, S. et al. Air pollution and hospital emergency room and admissions for cardiovascular and respiratory diseases in Doña Ana County, New Mexico. Environmental Research, v. 129, p. 39–46, 2014. DOI: https://doi.org/10.1016/j.envres.2013.12.006
RODRIGUES, P. C. DE O. et al. Climatic variability and morbidity and mortality associated with particulate matter. Revista de saude publica, v. 51, p. 91, 2017.
SEINFELD, J. H.; PANDIS, S. N. Atmospheric chemistry and physics : from air pollution to climate change. [s.l.] Wiley, 2016.
SONTER, L. J. et al. Mining drives extensive deforestation in the Brazilian Amazon. Nature Communications, v. 8, n. 1, p. 1–7, 2017. DOI: https://doi.org/10.1038/s41467-017-00557-w
STOWELL, J. D. et al. Associations of wildfire smoke PM 2.5 exposure with cardiorespiratory events in Colorado 2011-2014. Environment International, v. 133, p. 105151, 2019. DOI: https://doi.org/10.1016/j.envint.2019.105151
TESSUM, C. W. et al. PM2.5 polluters disproportionately and systemically affect people of color in the United States. Sci. Adv, v. 7, p. 4491–4519, 2021. DOI: https://doi.org/10.1126/sciadv.abf4491
THAM, R. et al. The impact of smoke on respiratory hospital outcomes during the 2002-2003 bushfire season, Victoria, Australia. Respirology, v. 14, n. 1, p. 69–75, 2009. DOI: https://doi.org/10.1111/j.1440-1843.2008.01416.x
THELEN, B. et al. Modeling acute respiratory illness during the 2007 San Diego wildland fires using a coupled emissions-transport system and generalized additive modeling. Enviromental Health, v. 12, n. 94, 2013. DOI: https://doi.org/10.1186/1476-069X-12-94
TINLING, M. A. et al. Repeating cardiopulmonary health effects in rural North Carolina population during a second large peat wildfire. Enviromental Health, v. 15, n. 12, p. 1–12, 2016. DOI: https://doi.org/10.1186/s12940-016-0093-4
TOMASI, C. et al. Aerosol and Climate Change: Direct and Indirect Aerosol Effects on Climate. In: TOMASI, C.; FUZZI, S.; KOKHANOVSKY, A. (Eds.). . Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate. [s.l.] Wiley-VCH, 2017. p. 437–551. DOI: https://doi.org/10.1002/9783527336449.ch8
TRICCO, A. C. et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, v. 169, n. 7, p. 467–473, 2018. DOI: https://doi.org/10.7326/M18-0850
VILLÉN-PÉREZ, S. et al. Brazilian Amazon gold: indigenous land rights under risk. Elem Sci Anth, v. 8, 2020. DOI: https://doi.org/10.1525/elementa.427
WEICHENTHAL, S. et al. Oxidative burden of fine particulate air pollution and risk of cause-specific mortality in the Canadian Census Health and Environment Cohort (CanCHEC). Environmental Research, v. 146, n. April, p. 92–99, 2016. DOI: https://doi.org/10.1016/j.envres.2015.12.013
WEICHENTHAL, S. et al. Biomass Burning as a Source of Ambient Fine Particulate Air Pollution and Acute Myocardial Infarction. Epidemiology, v. 28, n. 3, p. 329–337, 2017. DOI: https://doi.org/10.1097/EDE.0000000000000636
WEICHENTHAL, S. et al. Within-City Spatial Variations in Multiple Measures of PM 2.5 Oxidative Potential in Toronto, Canada. Environmental Science and Technology, v. 53, n. 5, p. 2799–2810, 2019. DOI: https://doi.org/10.1021/acs.est.8b05543
WEILNHAMMER, V. et al. Extreme weather events in europe and their health consequences – A systematic review. International Journal of Hygiene and Environmental Health, v. 233, n. January, p. 113688, 2021. DOI: https://doi.org/10.1016/j.ijheh.2021.113688
WILLIAMS, A. P. et al. Observed Impacts of Anthropogenic Climate Change on Wildfire in California. Earth’s Future, v. 7, p. 892–910, 2019. DOI: https://doi.org/10.1029/2019EF001210
WOO, S. H. L. et al. Air pollution from wildfires and human health vulnerability in Alaskan communities under climate change. Environmental Research Letters, v. 15, n. 9, 2020. DOI: https://doi.org/10.1088/1748-9326/ab9270
YAO, J. et al. Sub-Daily Exposure to Fine Particulate Matter and Ambulance Dipatches during Wildfire Seasons: A Case-Crossover Study in British Columbia, Canada. Enviromental Health Perspective, v. 128, n. 6, 2020. DOI: https://doi.org/10.1289/EHP5792
YU, P. et al. Bushfires in Australia: a serious health emergency under climate change. The Lancet Planetary Health, v. 4, n. 1, p. e7–e8, 2020. DOI: https://doi.org/10.1016/S2542-5196(19)30267-0
ZEMP, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nature Communications, v. 8, 2017. DOI: https://doi.org/10.1038/ncomms14681
Downloads
Publicado
Como Citar
Edição
Seção
Licença
A aprovação dos artigos implica a aceitação imediata e sem ônus de que a Revista Brasileira de Climatologia terá exclusividade na primeira publicação do artigo. Os autores continuarão, não obstante, a deter os direitos autorais. Os autores autorizam também que seus artigos sejam disponibilizados em todos os indexadores aos quais a revista está vinculada.
Os autores mantém seus direitos de publicação sem restrições
A Comissão Editorial não se responsabiliza pelos conceitos ou afirmações expressos nos trabalhos publicados, que são de inteira responsabilidade dos autores.
A Revista Brasileira de Climatologia oferece acesso livre imediato ao seu conteúdo, seguindo o entendimento de que disponibilizar gratuitamente o conhecimento científico ao público proporciona maior democratização do conhecimento e tende a produzir maior impacto dos artigos publicados. Os artigos publicados na revista são disponibilizados segundo a Licença Creative Commons CC-BY-NC 4.0 (https://creativecommons.org/licenses/by-nc/4.0/). Segundo essa licença é permitido acessar, distribuir e reutilizar os artigos para fins não comerciais desde que citados os autores e a fonte. Ao submeter artigos à Revista Brasileira de Climatologia, os autores concordam em tornar seus textos legalmente disponíveis segundo essa licença