LCZ4r, un paquete R para analizar zonas climáticas locales e islas de calor urbanas

Autores/as

DOI:

https://doi.org/10.5418/ra2025.v21i44.19763

Palabras clave:

Zonas Climáticas Locais, Modelagem Climática, Ilhas de Calor Urbanas, Software

Resumen

Las zonas climáticas locales (LCZ) son el sistema de clasificación para los estudios del clima urbano y ofrecen un enfoque que distingue áreas según el uso del suelo, la cobertura del suelo y las propiedades físicas. Este artículo presenta LCZ4r, un paquete R diseñado para analizar LCZ y islas de calor urbanas (UHI). Desarrollado en la plataforma de programación de código abierto R, sus funciones se categorizan en dos tipos: las funciones generales, permiten la extracción del mapa LCZ para cualquier área seca del mundo - desde barrios hasta ciudades, así como el cálculo de áreas de clase LCZ y la obtención de parámetros físicos; y funciones locales, que requieren datos primarios sobre variables ambientales para tareas tales como el cálculo de anomalías térmicas entre LCZ, la interpolación de temperatura y la evaluación de la intensidad de UHI. Se destaca la importancia de LCZ4r en la búsqueda de nuevas formas de planificación urbana, la lucha contra la crisis climática y la promoción de la democratización de la ciência.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Max Wendell Batista dos Anjos, Universidade Federal do Rio Grande do Norte (UFRN)

Doutor em Geografia, Professor Visitante do Departamento de Geografia da Universidade Federal do Rio Grande do Norte (UFRN).

Dayvid Carlos de Medeiros, Universidade Federal do Rio Grande do Norte (UFRN)

Licenciado em Geografia, Mestrando do Programa de Pós-Graduação em Geografia da Universidade Federal do Rio Grande do Norte (UFRN).

Francisco Jablinski Castelhano, Universidade Federal do Rio Grande do Norte (UFRN)

Doutor em Geografia, Professor Adjunto do Departamento de Geografia da Universidade Federal do Rio Grande do Norte (UFRN).

Citas

ALCOFORADO, M.-J.; ANDRADE, H. Nocturnal urban heat island in Lisbon (Portugal): main features and modelling attempts. Theoretical and Applied Climatology, v. 84, p. 151–159, 2006. DOI: https://doi.org/10.1007/s00704-005-0152-1

ALEXANDER, P.; MILLS, G. Local Climate Classification and Dublin’s Urban Heat Island. Atmosphere, v. 5, p. 755–774, 2014. DOI: https://doi.org/10.3390/atmos5040755

AKBARI, H.; MENON, S.; ROSENFELD, A. Global cooling: increasing world-wide urban albedos to offset CO2. Climatic Change, v. 94, p. 275–286, 2009. DOI: https://doi.org/10.1007/s10584-008-9515-9

ANJOS, M.; LOPES, A.; LUCENA, A. J. D.; MENDONÇA, F. Sea Breeze Front and Outdoor Thermal Comfort during Summer in Northeastern Brazil. Atmosphere, v. 11, p. 1013, 2020. DOI: https://doi.org/10.3390/atmos11091013

ANJOS, M.; LOPES, A. Urban Heat Island and Park Cool Island Intensities in the Coastal City of Aracaju, North-Eastern Brazil. Sustainability, v. 9, p. 1379, 2017. DOI: https://doi.org/10.3390/su9081379

ANJOS, M. et al. Analysis of the urban heat island under different synoptic patterns using local climate zones. Building and Environment, v. 185, p. 107268, 2020. DOI: https://doi.org/10.1016/j.buildenv.2020.107268

ARAÚJO, Christiane Alves; BARBOSA, Ricardo Victor Rodrigues. Zonas Climáticas Locais: breve revisão da literatura em estudos de clima urbano no Brasil. In: CONGRESSO ARAGUAIENSE DE CIÊNCIAS EXATA, TECNOLÓGICA E SOCIAL APLICADA, p. xx, 2021, Santana do Araguaia. Anais... Santana do Araguaia: III CONARA, 2021

BECHTEL, B. et al. Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS International Journal of Geo-Information, v. 4, p. 199–219, 2015. DOI: https://doi.org/10.3390/ijgi4010199

BELLUCCO, V. et al. Modelling the biogenic CO2 exchange in urban and non-urban ecosystems through the assessment of light-response curve parameters. Agricultural and Forest Meteorology, v. 236, p. 113–122, 2017. DOI: https://doi.org/10.1016/j.agrformet.2016.12.011

CARSLAW, D. C.; ROPKINS, K. openair — An R package for air quality data analysis. Environmental Modelling & Software, v. 27-28, p. 52–61, 2012. DOI: https://doi.org/10.1016/j.envsoft.2011.09.008

CHING, J. et al. WUDAPT: An Urban Weather, Climate, and Environmental Modeling Infrastructure for the Anthropocene. Bulletin of the American Meteorological Society, v. 99, p. 1907–1924, 2018. DOI: https://doi.org/10.1175/BAMS-D-16-0236.1

DEMUZERE, M.; KITTNER, J.; BECHTEL, B. LCZ Generator: A Web Application to Create Local Climate Zone Maps. Frontiers in Environmental Science, v. 9, p. 637455, 2021. DOI: https://doi.org/10.3389/fenvs.2021.637455

DEMUZERE, M.; ARGÜESO, D.; ZONATO, A.; KITTNER, J. W2W: A Python package that injects WUDAPT’s Local Climate Zone information in WRF. [S.l.], 2022. Disponível em: https://doi.org/10.5281/ZENODO.7016607. DOI: https://doi.org/10.21105/joss.04432

DEMUZERE, M.; BECHTEL, B.; MIDDLE, A.; MILLS, G. European LCZ map. [S.l.], 2022. Disponível em: https://doi.org/10.6084/M9.FIGSHARE.13322450.

DEMUZERE, M. et al. Combining expert and crowd-sourced training data to map urban form and functions for the continental US. Scientific Data, v. 7, p. 264, 2020. DOI: https://doi.org/10.1038/s41597-020-00605-z

DEMUZERE, M. et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth System Science Data, v. 14, p. 3835–3873, 2022. DOI: https://doi.org/10.5194/essd-14-3835-2022

DEMUZERE, M.; BECHTEL, B.; MIDDLE, A.; MILLS, G. Mapping Europe into local climate zones. PLOS ONE, v. 14, p. e0214474, 2019. DOI: https://doi.org/10.1371/journal.pone.0214474

DIRKSEN, M.; RONDA, R. J.; THEEUWES, N. E.; PAGANI, G. A. Sky view factor calculations and its application in urban heat island studies. Urban Climate, v. 30, p. 100498, 2019. DOI: https://doi.org/10.1016/j.uclim.2019.100498

FENNER, D.; MEIER, F.; SCHERER, D.; POLZE, A. Spatial and temporal air temperature variability in Berlin, Germany, during the years 2001–2010. Urban Climate, v. 10, p. 308–331, 2014. DOI: https://doi.org/10.1016/j.uclim.2014.02.004

GOUSSEFF, M.; BOCHER, E.; BERNARD, J.; WIEDERHOLD, E. L. S. lczexplore: an R package to explore Local Climate Zone classifications. Journal of Open Source Software, v. 8, p. 5445, 2023. DOI: https://doi.org/10.21105/joss.05445

HIEMSTRA, P.; PEBESMA, E.; TWENHÖFEL, C.; HEUVELINK, G. automap: Automatic interpolation package. 2021.

HUANG, F. et al. Mapping local climate zones for cities: A large review. Remote Sensing of Environment, v. 292, p. 113573, 2023. DOI: https://doi.org/10.1016/j.rse.2023.113573

KLEIN, M.; BAUER, N.; MATICOLLI, G. Dados de Estações Automáticas de Superfície e sua Aplicação para o Estudo da Ilha de Calor em Curitiba-PR. In: Anais do Congresso Brasileiro de Meteorologia, v. 1, p. 204–208, Rio de Janeiro, 2022.

KUHN, M.; WICKHAM, H. recipes: Preprocessing Tools to Create Design Matrices. 2021.

KUHN, M.; WICKHAM, H. recipes: Preprocessing and Feature Engineering Steps for Modeling. Disponível em: https://github.com/tidymodels/recipes. Acesso em: 21 fev. 2025.

LOPES, A.; ALVES, E.; ALCOFORADO, M. J.; MACHETE, R. Lisbon Urban Heat Island Updated: New Highlights about the Relationships between Thermal Patterns and Wind Regimes. Advances in Meteorology, 2013, p. 1–11, 2013. DOI: https://doi.org/10.1155/2013/487695

LEHNERT, M.; SAVIĆ, S.; MILOŠEVIĆ, D.; DUNJIĆ, J.; GELETIČ, J. Mapping Local Climate Zones and Their Applications in European Urban Environments: A Systematic Literature Review and Future Development Trends. ISPRS International Journal of Geo-Information, v. 10, p. 260, 2021. DOI: https://doi.org/10.3390/ijgi10040260

MA, L.; ZHU, X.; QIU, C.; BLASCHKE, T.; LI, M. Advances of Local Climate Zone Mapping and Its Practice Using Object-Based Image Analysis. Atmosphere, v. 12, p. 1146, 2021. DOI: https://doi.org/10.3390/atmos12091146

MEIER, F.; FENNER, D.; GRASSMANN, T.; OTTO, M.; SCHERER, D. Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Climate, v. 19, p. 170–191, 2017. DOI: https://doi.org/10.1016/j.uclim.2017.01.006

MENDONÇA, F. A.; ROSEGHINI, W.; ARAUJO, W.; SCHMITZ, L. Incidência atual e cenários futuros da dengue na capital do Estado do Paraná. In: A DENGUE NO BRASIL: Uma Perspectiva Geográfica. Curitiba, 2021. p. 501–518. DOI: https://doi.org/10.24824/978652510128.6

PADGHAM, M.; STEPINiski, T. osmdata: Import OpenStreetMap data as simple features or spatial objects. 2021.

PEBESMA, E.; BIVAND, R. S. gstat: Spatial and spatio-temporal geostatistical modelling, prediction, and simulation. 2005.

QI, M. et al. Mapping urban form into local climate zones for the continental US from 1986–2020. Scientific Data, v. 11, p. 195, 2024. DOI: https://doi.org/10.1038/s41597-024-03042-4

RSTUDIO TEAM. RStudio: Integrated Development for R. RStudio. PBC, 2022.

STEWART, I. D.; OKE, T. R. Local Climate Zones for Urban Temperature Studies. Bulletin of the American Meteorological Society, v. 93, p. 1879–1900, 2012. DOI: https://doi.org/10.1175/BAMS-D-11-00019.1

STEWART, I. D.; OKE, T. R.; KRAYENHOFF, E. S. Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. International Journal of Climatology, v. 34, p. 1062–1080, 2014. DOI: https://doi.org/10.1002/joc.3746

TIOBE. TIOBE Index for March 2024. TIOBE Software BV, 2024.

TIPPMANN, S. Programming tools: Adventures with R. Nature, v. 517, p. 109–110, 2015. DOI: https://doi.org/10.1038/517109a

WICKHAM, H.; FRANÇOIS, R.; HENRY, L.; MÜLLER, K.; VAUGHAN, D. dplyr: A Grammar of Data Manipulation. 2023.

WICKHAM, H. ggplot2: Elegant graphics for data analysis. Springer-Verlag, 2016. DOI: https://doi.org/10.1007/978-3-319-24277-4_9

ZHU, X. X. et al. The urban morphology on our planet – Global perspectives from space. Remote Sensing of Environment, v. 269, p. 112794, 2022. DOI: https://doi.org/10.1016/j.rse.2021.112794

Publicado

2025-06-06

Cómo citar

dos Anjos, M. W. B., Carlos de Medeiros, D., & Castelhano, F. J. (2025). LCZ4r, un paquete R para analizar zonas climáticas locales e islas de calor urbanas. Revista Da ANPEGE, 21(44). https://doi.org/10.5418/ra2025.v21i44.19763

Número

Sección

Geografia Brasileira na UGI: temas e perspectivas