Geostatistics as a tool to estimate rainfall variability in Pernambuco, Brazil Timóteo

Authors

DOI:

https://doi.org/10.30612/agrarian.v13i50.11982

Keywords:

Rainfall distribution. Semivariogram. Northeastern semiarid.

Abstract

The knowledge of the temporal space behavior of the rains in this context plays an important role when the objective is to make decisions about the most important resource. The objective of this work was to investigate the contribution of longitude, latitude and the covariable altitude, as auxiliary variables in obtaining estimates of the spatial distribution of average annual precipitation in the state of Pernambuco. Among the models tested, the exponential presented a better fit to the observed data, and the trends showed a strong spatial dependence and are directly correlated with the average annual rainfall. The use of the tool proved to be effective in estimating rainfall, and can be used in several areas of knowledge, mainly as a support tool for decision making.

Downloads

Download data is not yet available.

Author Biographies

Timóteo Herculino da Silva Barros, Escola superior de Agricultura Luiz de Queiroz (ESALQ/USP)

Departamento de Engenharia de Biossistemas

Rubens Duarte Coelho, Escola superior de Agricultura Luiz de Queiroz (ESALQ/USP)

Departamento de Engenharia de Biossistemas

References

ANA. ANA discute recursos hídricos do Nordeste em Simpósio — Agência Nacional de Águas. Disponível em: https://www.ana.gov.br/noticias-antigas/ana-discute-recursos-hadricos-do-nordeste-em.2019-03-15.2688459806. Acesso em: 13 maio. 2020.

BAO, Z.; ZHANG, J.; LIU, J.; WANG, G.; YAN, X.; WANG, X.; ZHANG, L.l. Sensitivity of hydrological variables to climate change in the Haihe River basin, China. Hydrological Processes, v. 26, n. 15, p. 2294–2306, 15 jul. 2012.

BATTISTI, R.; BENDER, F. D.; SENTELHAS, P. C. Assessment of different gridded weather data for soybean yield simulations in Brazil. Theoretical and Applied Climatology, v. 135, n. 1–2, p. 237–247, 2019.

BENDER, F. D.; SENTELHAS, P. C. Solar radiation models and gridded databases to fill gaps in weather series and to project climate change in Brazil. Advances in Meteorology, v. 2018, 2018.

BOZDOGAN, H. Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika, v. 52, n. 3, p. 345–370, set. 1987.

BUTTAFUOCO, G.; CASTRIGNANÒ, A.; CUCCI, G.; LACOLLA, G.; LUCÀ, F. Geostatistical modelling of within-field soil and yield variability for management zones delineation: a case study in a durum wheat field. Precision Agriculture, v. 18, n. 1, p. 37–58, 1 fev. 2017.

CASTRIGNANÒ, A.; BUTTAFUOCO, G.; QUARTO, R.; PARISI, D.; VISCARRA ROSSEL, R.A.; TERRIBILE, F., LANGELLA, G., VENEZIA, A. A geostatistical sensor data fusion approach for delineating homogeneous management zones in Precision Agriculture. Catena, v. 167, p. 293–304, 1 ago. 2018.

CORTÉS, J.L.; BAUTISTA, F.; DELGADO, C.; QUINTANA, P.; AGUILAR, D.; GARCÍA, A.; FIGUEROA, C.; GOGICHAISHVILI, A. Distribución espacial de los metales pesados en polvos urbanos de la ciudad de Ensenada, Baja California, México. Revista Chapingo, Serie Ciencias Forestales y del Ambiente, v. 23, n. 1, p. 47–60, 1 jan. 2017.

DEXTER, A.R.; CZYZ, E.A.; RICHARD, G.; RESZKOWSKA, A. A user-friendly water retention function that takes account of the textural and structural pore spaces in soil. Geoderma, v. 143, n. 3–4, p. 243–253, 2008.

HOUNSOU-GBO, G.A.; SERVAIN, J.; ARAUJO, M.; MARTINS, E.S.; BOURLÈS, B.; CANIAUX, G.. Oceanic Indices for Forecasting Seasonal Rainfall over the Northern Part of Brazilian Northeast. American Journal of Climate Change, v. 05, n. 02, p. 261–274, 31 maio 2016.

MELLO, C. R.; VIOLA, M. R. Mapeamento de chuvas intensas no estado de Minas Gerais. Revista Brasileira de Ciencia do Solo, v. 37, n. 1, p. 37–44, jan. 2013.

MUÑOZ-NÁJERA, M.A.; TAPIA-SILVA, F.O.; BARRERA-ESCORCIA, G.; RAMÍREZ-ROMERO, P. Statistical and geostatistical spatial and temporal variability of physico-chemical parameters, nutrients, and contaminants in the Tenango Dam, Puebla, Mexico. Journal of Geochemical Exploration, v. 209, p. 106435, 1 fev. 2020.

NÓBREGA, R.L.B.; GUZHA, A.C.; LAMPARTER, G.; AMORIM, R.S.S.; COUTO, E.G.; HUGHES, H.J.; JUNGKUNST, H.F.; GEROLD, G. Impacts of land-use and land-cover change on stream hydrochemistry in the Cerrado and Amazon biomes. Science of the Total Environment, v. 635, p. 259–274, 2018.

QUEIROZ, M.G.; SILVA, T.G.F.; ZOLNIER, S.; SOUZA, C.A.A.; DE SOUZA, L.S.B.; NASCIMENTO ARAÚJO, G.; JARDIM, A.M. R.F.; MOURA, M.S.B. Partitioning of rainfall in a seasonal dry tropical forest. Ecohydrology and Hydrobiology, 8 fev. 2020.

RAVELLYS, L.; ALCÂNTARA, P. D.; ALVES, L.; RAYANE, I.; COSTA, D.A. Journal of Environmental mesorregiões do estado de Pernambuco Evaluation of probabilistic models for heavy rains in the mesoregions of the state of Pernambuco. v. 01, p. 90–103, 2019.

RIBEIRO JR., P. J.; DIGGLE, P. J. geoR: A package for geostatistical analysis. R-News, 2001.

SÁNCHEZ, E.; SOLMAN, S.; REMEDIO, A.R.C.; BERBERY, H.; SAMUELSSON, P.; DA ROCHA, R.P.; MOURÃO, C.; LI, L.; MARENGO, J.; CASTRO, M.; JACOB, D. Regional climate modelling in CLARIS-LPB: a concerted approach towards twentyfirst century projections of regional temperature and precipitation over South America. Climate Dynamics, v. 45, n. 7–8, p. 2193–2212, 1 out. 2015.

SHAPIRO, S. S.; WILK, M. B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika, v. 52, n. 3/4, p. 591, 1965. Disponível em: http://www.jstor.org/stable/2333709?origin=crossref.

YONTS, C.D.; HAGHVERDI, A.; REICHERT, D.L.; IRMAK, S. Deficit irrigation and surface residue cover effects on dry bean yield, in-season soil water content and irrigation water use efficiency in western Nebraska high plains. Agricultural Water Management, v. 199, p. 138–147, 1 fev. 2018. Disponível em: https://www.sciencedirect.com/science/article/pii/S037837741730416X. Acesso em: 12 mar. 2019.

Published

2020-11-23

How to Cite

Barros, T. H. da S., Bender, F. D., Silva, F. R. B., José, J. V., Costa, J. O., & Coelho, R. D. (2020). Geostatistics as a tool to estimate rainfall variability in Pernambuco, Brazil Timóteo. Agrarian Journal, 13(50), 513–520. https://doi.org/10.30612/agrarian.v13i50.11982

Issue

Section

Article - Agricultural Engineering