10.30612/realizacao.v9i18.16557

ISSN: 2358-3401

Submetido em 16 de dezembro de 2022 Aceito em 19 de dezembro de 2022 Publicado em 30 de dezembro de 2022

Implantação de sistema de irrigação e estufa na fazenda escola do Instituto Federal — Campus Naviraí

Implementation of an irrigation system and greenhouse at the Federal Institute farm - Campus Naviraí

Willian Pereira Centurion¹
Marco Aurélio Argenta Mocinho Junior¹
Mauricio Conceição Freitas¹
Rafael Aparecido Souza Gonçalves¹
Daniel Zimmermann Mesquita¹

RESUMO

Com a construção da Fazenda Escola do IFMS Campus Naviraí, tornou-se necessária também a construção de ambientes experimentais para pesquisas e aulas práticas, tanto para alunos do ensino médio-técnico quanto do ensino superior. Tendo em vista a importância da irrigação e do ambiente protegido na agricultura, alunos, professores e colaboradores do IFMS Campus Naviraí desempenharam atividades para a implantação do sistema de irrigação e construção da estufa para experimentos na área agrária. Durante o processo de trabalho, os alunos tomaram conhecimento sobre a importância da água na agricultura, tipos diferentes de irrigação e de ambientes protegidos para cultivo. Todas essas atividades foram desempenhadas por meio de projeto de um Núcleo de Estudos em Agroecologia (NEA), financiado pelo CNPq, que visa promover a agricultura orgânica. Tanto para professores, quanto para alunos, foi possível a troca e obtenção de experiência pelo trabalho prático prestado em conjunto.

Palavras-chave: Educação no campo; Ambiente protegido; Água.

ABSTRACT

¹ Instituto Federal de Mato Grosso do Sul — Campus Naviraí

With the construction of the Fazenda Escola do IFMS Campus Naviraí, it was also necessary to build experimental environments for research and practical classes, both for high school and higher education students. In view of the importance of irrigation and the protected environment in agriculture, students, teachers and collaborators of IFMS Campus Naviraí performed activities for the implementation of the irrigation system and construction of the greenhouse for experiments in the agrarian area. During the work process, students became aware of the importance of water in agriculture, different types of irrigation and protected environments for cultivation. All these activities were carried out through a project of a Center for Studies in Agroecology (NEA), funded by CNPq, which aims to promote organic agriculture. For both teachers and students, it was possible to exchange and obtain experience through the practical work performed together.

Keywords: Education in the field; Protected Environment; Water.

1 INTRODUÇÃO

Há milênios, a água é reconhecida como sendo uma substância vital que está presente na natureza, e é parte constituinte fundamental para a conservação dos ecossistemas e da vida de todos os seres do planeta (WOLKMER; PIMMEL, 2013). A deficiência e o excesso de água no solo são os fatores mais limitantes para a obtenção de altas produtividades (PAZ et al., 2000). A agricultura irrigada é uma das atividades econômicas mais importantes desenvolvidas pelo homem, proporcionando uma variedade de alimentos, ao mesmo tempo, em que gera emprego e renda (FARIAS, 2004).

Os efeitos das mudanças climáticas possivelmente apresentarão grande variabilidade entre as diferentes regiões do planeta e setores agrícolas (FISCHER et al., 2002). Literaturas que analisam a agricultura brasileira, afirmam que mudanças climáticas causarão impacto líquido negativo para o país em médio e longo prazo (SIQUEIRA et al., 2004; ÁVILA et al., 2006; FÉRES et al., 2008). Projetos de irrigação de pequena escala podem gerar diversos benefícios, particularmente em termos de eficiência, baixos custos de participação e mais influência sobre a gestão dos recursos hídricos (DILLON, 2011).

A irrigação por superfície contribui para diminuir os impactos climáticos negativos, especificamente seca e calor extremos sobre as culturas (ZHANG et al., 2015; KIRNAK et al., 2013). A estabilidade do sistema de produção proporcionada pelo uso da irrigação por aspersão estímulo o uso de práticas de maior nível tecnológico, com consequente aumento de produtividade (ORIVALDO et al., 2006). A irrigação localizada por método de gotejamento compreende a aplicação de pequenas quantidades de água diretamente na zona radicular das plantas (DASBERG; BRESLER, 1985).

O sistema de cultivo em ambiente protegido consiste em uma técnica que possibilita o controle de variáveis climáticas como temperatura, umidade do ar, radiação solar e vento (SILVA et al., 2014). A produtividade no ambiente protegido pode ser de duas a três vezes maior

Implantação de sistema de irrigação e estufa na fazenda escola do Instituto Federal — Campus...

que as observadas no campo e com melhores características referentes a qualidade do produto final (CERMENO, 1990). O emprego de estufas torna viável a produção de vegetais em épocas ou locais cujas condições climáticas são críticas (SENTELHAS; SANTOS, 1995).

Dentre as evoluções tecnológicas observadas na agricultura, destaca-se aqui os ambientes de cultivo controlado, denominados de estufas, as quais visam manter os parâmetros ótimos de cultivo (MESKIV, 2020). De acordo com a literatura, a estufa do tipo londrina viabiliza o incremento de produção agrícola de diversas culturas considerando condições financeiras, físicas e administrativas para uma produção rentável (OLIVEIRA et al., 2018). A produção de hortaliças utilizando a tecnologia de plantio protegido por estufas é vantajoso e rentável (KATAN, 1976).

O setor de fruticultura está entre os principais geradores de renda, emprego e de desenvolvimento rural do agronegócio nacional (BUAINAIN; BATALHA, 2007). A fruticultura irrigada possui viabilidade citada em estudos apontando ser uma atividade com potencial para dinamizar a agroindústria regional (BRANDÃO, 2015). Os investimentos direcionados para a modernização agrícola visam, sobretudo, a introdução de sistemas de irrigação para a produção frutífera com maior abrangência comercial e aproveitamento dos solos férteis e dos abundantes recursos hídricos existentes (BONETI, 1998; SANTANA, 1997).

Considerada como alternativa ao desenvolvimento sustentável, a agricultura orgânica vem apresentando um grande desenvolvimento nas últimas décadas (SANTOS et al., 2012). Nos últimos anos, a produção orgânica tem registrado grande crescimento em vários países, movimentando bilhões de dólares anualmente em seu mercado (Ribeiro & Soares, 2010). O aumento do consumo de produtos orgânicos no mercado atinge taxas de crescimento superior a 50% anual, sendo atribuído a maior preocupação com a saúde familiar, bem como com o meio ambiente (KATHOUNIAN, 2010).

O objetivo deste trabalho foi desenvolver, acompanhar e descrever a implantação do sistema de irrigação e da estufa na Fazenda Escola do IFMS Campus Naviraí.

2 MATERIAL E MÉTODOS

Executou-se a construção e instalação dos sistemas na área designada para sediar a Fazenda Escola do Instituto Federal de Mato Grosso do Sul — campus Naviraí (IFMS), que fica situada na Rodovia MS 141, km 4, s/n°. Contendo uma extensão de 50 hectares (7 hectares de

um lado da rodovia e 43 hectares do outro lado), ainda em fase de construção, levará o nome de "Fazenda Escola Sakae Kamitani" (Figura 1).

Figura 1 - Fazenda Escola do IFMS Campus Naviraí (CENTURION, 2022).

A área de implantação do sistema de irrigação, estufa e pomar orgânico está situada ao norte da sede do campus (fundos), com área aproximada de 2,2 hectares. Com base na área definida, estabeleceu-se todo delineamento do sistema de irrigação e instalação da estufa (Figura 2). A implantação do sistema iniciou-se em setembro de 2021, tendo como auxílio de mão-de-obra colaboradores, docentes e alunos do IFMS Campus Naviraí.

Figura 2 - Croqui de implantação do sistema de irrigação e estufa.

Optou-se pela estufa tipo londrino, composta em sua estrutura: madeira e arame galvanizado. A construção da mesma tem-se como base o croqui de orientação (Figura 3). A estrutura será destinada ao uso como berçário de mudas, cultivo de hortaliças, experimentos em vaso, assim como outras atividades que exigem um ambiente protegido.

Implantação de sistema de irrigação e estufa na fazenda escola do Instituto Federal — Campus...

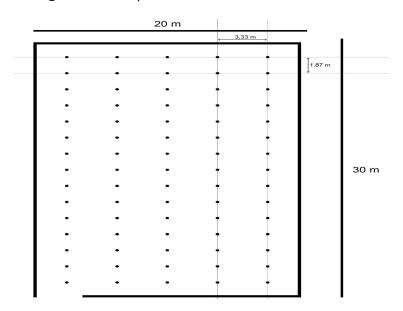


Figura 3 - Croqui da estufa (CENTURION, 2022).

3 RESULTADOS E DISCUSSÕES

Após a conclusão do planejamento do sistema de irrigação, iniciou-se a implantação dele. A primeira etapa da execução do projeto deu-se pela abertura dos sulcos (valas/valetas) no solo, onde acolherá toda a tubulação mestra do sistema, pode-se observar na figura 2 demarcado pela linha na cor azul. Contou-se com apoio dos colaboradores, alunos e docentes para a abertura dos sulcos, e fez-se uso de ferramentas tais como: enxada, enxadão e uma retroescavadeira que auxiliam no processo (Figura 4).

Figura 4 - Implantação linha mestra de instalação.

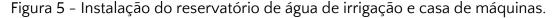

A tubulação principal (mestra) do sistema de irrigação conta com canos de PVC, que conduzem a água de irrigação do poço artesiano até o reservatório (caixa d'água) de 15.000 litros. Os tubos (canos) de PVC são específicos para uso na irrigação, e possuem diâmetro de 50 mm. Os tubos de PVC foram conectados com cola para tubos específicas para alta pressão de água. Em determinadas conexões, os canos foram fixados de forma rosqueada. O fechamento dos sulcos ocorreu com auxílio da retroescavadeira.

Tabela 1 - Custos do sistema de irrigação (MAXXFERT, 2021).

DESCRIÇÃO DO PRODUTO/SERVIÇO	UND	QTDE	VLR UNIT	VLR TOTAL	TRIBUTOS
TUBO PVC IRRIGA PN80 PBL 50 mm PEVESUL	UNID	70	R\$ 65,00	R\$ 4.550,00	R\$ 611,97
REGISTRO ESF SOLD IRRIGA 50 mm PEVESUL	UNID	9	R\$ 32,70	R\$ 294,30	R\$ 39,58
CURVA 90.° SOLD IRRIGA 50 mm	UNID	20	R\$ 15,40	R\$ 308,00	R\$ 41,43
FILTRO DE DISCOS Y 1 ½ 120 MESH	UNID	2	R\$ 130,00	R\$ 260,00	R\$ 34,97
TE SOLD IRRIGA 50 mm	UNID	7	R\$ 15,00	R\$ 105,00	R\$ 14,12
CAPO PP 3 × 4 mm (100)	METRO	3	R\$ 1633,00	R\$ 4.899,00	R\$ 205,76
ADESIVO PVC 175g COLA (PEVESUL)	UNID	3	R\$ 18,30	R\$ 54,90	R\$ 7,38
UNIÃO SOLD/ROSCAVEL 50 mm	UNID	6	R\$ 45,00	R\$ 270,00	R\$ 0,00
ADAPTADOR COM FLANGE 50 mm	UNID	2	R\$ 43,00	R\$ 86,00	R\$ 6,15
CAP IRRIGA SOLD 50 mm	UNID	5	R\$ 6,70	R\$ 33,50	R\$ 4,51
TOTAL	R\$ 10.886,70				

Implantação de sistema de irrigação e estufa na fazenda escola do Instituto Federal — Campus...

A segunda etapa do projeto teve-se como objetivo a instalação do reservatório da água de irrigação, uma caixa d'água de 15.000 litros (Figura 5B). Inicialmente construiu-se uma base de concreto para acomodação ideal do reservatório e posteriormente a fixação dele sobe a base (Figura 5A). Junto ao reservatório, instalou-se uma casa de máquinas para abrigar as motobombas de sucção com função de movimentação da água de irrigação através do sistema, e para maior eficiência do mesmo, optou-se por motobombas com potência equivalentes a 5 cv (cavalo-vapor) e 1,5 cv que supriram toda a necessidade do sistema de irrigação (Figura 5C).

A base do reservatório confere um nivelamento e estabilidade para ele, a uma altura de 1,60 metros acima do nível do solo, garante uma força da gravitacional que possa auxiliar a movimentação da água e alívio de força pelas motobombas. A distribuição da água de irrigação se dá pela seguinte ordem: motobomba de 1,5 cv de potência — transporte de água de irrigação do reservatório para a estufa; motobomba de 5 cv de potência — transporte de água de irrigação do reservatório para área de culturas perenes e anuais.

Tabela 2 - Preço dos materiais usados na instalação do reservatório.

DESCRIÇÃO DO PRODUTO/SERVIÇO	UNID	QTDE	VLR UNIT	VLR TOTAL
MOTOBOMBA CENTRÍFUGA MULTIESTÁGIOS 1,5 cv	UNID	1	R\$ 969,39	R\$ 969,39
MOTOBOMBA CENTRÍFUGA MULTIESTÁGIOS 5 cv	UNID	1	R\$ 5.678,67	R\$ 5.678,67
CAIXA PE FORTLEV 15000 L C/TP	UNID	1	R\$ 11.535,00	R\$ 11.535,00
MÃO-DE-OBRA	HORA	Х	R\$ 5.000	R\$ 5.000
TOTA	R\$ 23.153,06			

A terceira etapa do projeto teve como objetivo a construção da estufa. O modelo de estufa escolhido é considerado simples e de baixo custo, tendo em vista que seus materiais podem ser encontrados com menor dificuldade. O primeiro passo foi a escavação do solo para a fixação dos palanques exteriores responsáveis pela fixação e sustentação da estrutura (Figura 6A), em seguida, a fixação da tela anti granizo vermelha nas laterais, tela essa que fará a proteção de ventos fortes, chuvas laterais e incidência solar (Figura 6B). Após a instalação da tela, fez-se a escavação e instalação dos palanques internos, responsáveis pela sustentação do telhado (Figura 6C), o telhado é composto por plástico filme, responsável pela proteção dos raios UV e fortes chuvas e dificultando a entrada de aves e grandes insetos (Figura 6D).

Figura 6 – Construção da estufa de mudas.

A confecção da estufa contou com um investimento de R\$ 27.401,35, contabilizando todos os materiais utilizados de acordo com a tabela 3, e oferece uma área de 600 m², e ficará à

Implantação de sistema de irrigação e estufa na fazenda escola do Instituto Federal — Campus...

disposição do IFMS Campus Naviraí para pesquisas, aulas práticas e experiências de campo (Figura 7).

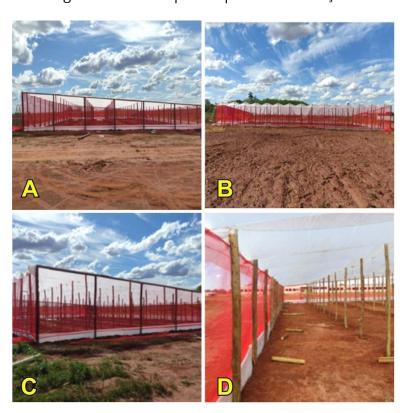


Figura 7 - Estufa após etapas de construção.

Tabela 3 - Custos da instalação da estufa (MAXXFERT, 2021).

DESCRIÇÃO DO PRODUTO/SERVIÇO	UNID	QTDE	VLR UNIT	VLR TOTAL	TRIBUTOS
PALANQUE DE EUCALIPTO TRATADO 6 A 8 CM/4M	UNID	80	R\$ 45,00	R\$ 3.600,00	R\$ 151,20
VIGA 5 × 10 CM METRO LINEAR	METRO	42	R\$ 23,57	R\$ 989,94	R\$ 0,00
SARRAFO 2,5×5CM/4M	UNID	16	R\$ 20,00	R\$ 320,00	R\$ 13,44
ARAME GALVANIZADO BWG 12	UNID	8	R\$ 30,12	R\$ 240,96	R\$ 17,23
FERRO 5/16 MT 12	UNID	6	R\$ 75,00	R\$ 450,00	R\$ 18,90

FERRO 4,2 MM	UNID	2	R\$ 25,00	R\$ 50,00	R\$ 2,10
GRAMPO PARA CERCA	UNID	1	R\$ 33,60	R\$ 33,60	R\$ 3,31
MAÇO DE PREGO 19×36	UNID	2	R\$ 38,00	R\$ 76,00	R\$ 7,48
MAÇO DE PREGO 22×48	UNID	3	R\$ 38,00	R\$ 114,00	R\$ 11,22
DOBRADIÇA CARTELA 3,5×214	UNID	2	R\$ 19,50	R\$ 39,00	R\$ 1,64
FIO CONDUTOR OURO 2000 METROS	UNID	1	R\$ 34,00	R\$ 34,00	R\$ 1,43
FILME UV DL 150 MICRA 4×100M	UNID	2	R\$ 2464,00	R\$ 4.928,00	R\$ 605,65
PEDRA BRITA	METRO	2	R\$ 142,50	71,25	R\$ 2,99
AREIA	METRO	0,5	R\$ 80,00	40,00	R\$ 1,68
ADAPTADOR COM FLANGE 50MM	UNID	2	R\$ 39,00	R\$ 78,00	R\$ 5,58
PALANQUE DE EUCALIPTO TRATADO 10 A 12CM/4M	UNID	44	R\$ 85,00	R\$ 3.740,00	R\$ 157,08
FILME PLÁSTICO 0,75 MICRAS 2 × 50 M	METRO	100	R\$ 3,75	R\$ 375,00	R\$ 46,09
CATRACA EMENDA ARAME CINFER	UNID	48	R\$ 15,00	R\$ 720,00	R\$ 51,48
TE SOLD IRRIGA 50MM	UNID	6	R\$ 15,00	R\$ 90,00	R\$ 12,10
ANTIGRANIZO LENO VERMELHO N 4,00 IF	METRO2	400	R\$ 6,20	R\$ 2.480,00	R\$ 378,94
CIMENTO CP 32 50 KG	SACO	2	R\$ 39,00	R\$ 78,00	R\$ 3,28
PERFIL ALUMÍNIO BARRA DUPLA 3M	UNID	4	R\$ 50,80	R\$ 203,20	R\$ 8,53
MOLA ZIG ZAG M	METRO	12	R\$ 4,20	R\$ 50,40	R\$ 2,12
TELA SOMBRITE 50% PEÇA 4×50 RÁFIA	UNID	2	R\$ 1800,00	R\$ 3.600,00	R\$ 151,20
MÃO-DE-OBRA	HORA	Х	R\$ 5.000	R\$ 5.000	R\$ 0,00
TOTAL	R\$ 27.401,35				

4 CONCLUSÃO

O objetivo do trabalho de implantar o sistema de irrigação e a estufa na Fazenda Escola do IFMS Campus Naviraí foi atingido. Foi possível a participação e registro por parte dos alunos, que agregaram experiência e valores na história da Fazenda Escola do IFMS Campus Naviraí.

Implantação de sistema de irrigação e estufa na fazenda escola do Instituto Federal — Campus...

O sistema de irrigação poderá auxiliar na produção de hortaliças orgânicas, mudas frutíferas, bem como outras experiências práticas; com a construção da estufa, será possível desenvolver estudo sobre hidroponia, germinação e crescimento de hortaliças, legumes e frutas em ambiente protegido, entre outras atividades na área.

AGRADECIMENTOS

Ao CNPq pelo apoio na concessão de bolsas e fomento ao Núcleo de Estudos em Agroecologia (NEA/IFMS-Naviraí)

REFERÊNCIAS

ÁVILA, A. F. D.; IRIAS, L. J. M.; LIMA, M. Impacto das mudanças climáticas na agricultura brasileira. Brasília: Embrapa, 2006.

ARF, O. et al. Resposta de cultivares de arroz de sequeiro ao preparo do solo e à irrigação por aspersão. **Pesquisa Agropecuária Brasileira**, v. 36, n. 6, 2001.

BRANDÃO, A. S. P. O pólo de fruticultura irrigada no norte e noroeste fluminense. **Revista de Política Agrícola**, Embrapa – Brasília, n. 2, p. 78 – 86, abr./mai./jun. 2004.

BONETI, L. W. **O silêncio das águas: políticas públicas, meio ambiente e exclusão social**. 2. ed. ljuí: UNIJUÍ, 1998.

BUAINAIN, A. M.; BATALHA, M. O. Cadeia produtiva de frutas. Brasília: IICA/MAPA/SPA, v. 7, 2007.

CERMEÑO, Z. S. **Estufas, instalação e maneio**. Lisboa: Litexa, 1990.

DASBERG, S.; BRESLER, E. **Drip irrigation manual**. Bet Dagan: International Irrigation Information Center, 1985.

DILLON, A. Do differences in the scale of irrigation projects generate different impacts on poverty and production? **Journal of Agricultural Economics**, v. 62, n. 2, p. 474–492, 2011.

FACHINELLO, J. C.; NACHTIGAL, J. C.; KERSTEN, E. Fruticultura: fundamentos e práticas. Pelotas: UFPel, 2008

FARIAS, S. R. A. Operação integrada dos reservatórios Engenheiro Ávidos e São Gonçalo. 2008. 160 f. Dissertação (Mestrado em Engenharia de Recursos Hídricos) - Pós-graduação em Engenharia Civil e Ambiental, Universidade Federal de Campina Grande, Campina Grande, 2004.

FÉRES, J.; REIS, E.; SPERANZA, J. Assessing the Impact of Climate Change on the Brazilian Agricultural Sector. *In*: 16th ANNUAL EAERE CONFERENCE, 2008, Gothenburg. Gothenburg: EAERE, 2008.

145

Implantação de sistema de irrigação e estufa na fazenda escola do Instituto Federal — Campus Naviraí. **RealizAção**, UGFD – Dourados, v. 9, n. 18, p. 134-146, 2022.

- FISCHER, G; SHAH, M.; VAN VELTHUIZEN, H. Climate change and agricultural vulnerability. Johannesburg: World Summit on Sustainable Development, 2002.
- KATHOUNIAN, C. A. A reconstrução ecológica da agricultura. Botucatu: Agroecológica, 2001.
- KIRNAK, H. et al. Irrigation and yield parameters of soybean as effected by irrigation management, soil compaction and nitrogen fertilization. **Journal of Agricultural Sciences**, Turkey, v. 19, p. 297–309, 2013.
- MESKIV, V. Automação de uma estufa agrícola destinada à produção de mudas de eucalipto. 2020. 62 f. Dissertação (Bacharelado em Engenharia Eletrônica) Universidade Tecnológica Federal do Paraná, Campo Mourão, 2020.
- OLIVEIRA, L. P. et al. Viabilidade da produção de pepino japonês em ambiente protegido estufa modelo londrina. *In*: 7 ° JORNADA CIENTÍFICA E TECNOLÓGICA DA FATEC DE BOTUCATU, 2018, São Paulo. **Anais eletrônicos**. Botucatu: Fatec, 2018.
- PAZ, V. P. S.; TEODORO, R. E. F.; MENDONÇA, F. C. Recursos hídricos, agricultura irrigada e meio ambiente. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 4, n. 3, p. 465–473, 2000.
- RIBEIRO, L. M.; SOARES, A. Uma agricultura que não agride o meio ambiente. **Revista da EMATER-MG**, Minas Gerais, v. 24, n. 74, p. 30, 2010.
- SANTANA, L. M. de. **Produção, emprego e receita tributária: o efeito paradisíaco das frutas tropicais no Polo Agroindustrial do Açu/RN**. 1995. 124 f. Dissertação (Mestrado em Economia) Universidade Federal da Paraíba, Natal, 1995.
- SANTOS, J. O. et al. A evolução da agricultura orgânica. **Revista Brasileira de Gestão Ambiental**, GVAA Pombal/PB, v. 6, n. 1, p. 35–41, jan./dez. 2012.
- SIQUEIRA, O. J. F., FARIAS, J. R. B.; SANS, L. M. A. Efeitos potenciais de mudanças climáticas globais na agricultura brasileira e estudos de adaptação para trigo, milho e soja. **Revista Brasileira de Agrometeorologia**, SBAGRO Pernambuco, v. 2, n. 1, p. 115–129, 1994.
- SENTELHAS, C. S.; SANTOS, A. O. Cultivo Protegido: aspectos microclimáticos. **Revista Brasileira de Horticultura Ornamental**, SPFPO Pernambuco, v. 1, n. 2, p. 108–115, 1995.
- SILVA, B. A.; SILVA, A. R. da.; PAGIUCA, L. G. Cultivo protegido: em busca de mais eficiência produtiva! **Hortifruti Brasil**, São Paulo, 2014
- WOLKMER, M. de F. S.; PIMMEL, N. F. Política nacional de recursos hídricos: governança da água e cidadania ambiental. **Revista Sequência**, Programa de Pós-graduação em Direito da UFSC Florianópolis, n. 67, p. 165-198, dez. 2013.
- ZHANG, T.; LIN, X.; SASSENRATH, G. F. Current irrigation practices in the central United States reduce drought and extreme heat impacts for maize and soybean, but not for wheat. **Science of the Total Environment**, v. 508, p. 331–342, mar. 2015.