Zona de Convergência do Atlântico Sul: uma revisão sistemática e de discurso

Autores

DOI:

https://doi.org/10.55761/abclima.v36i21.19013

Palavras-chave:

ZCAS, Desastres, Revisão, Precipitação, Impactos.

Resumo

A Zona de Convergência do Atlântico Sul (ZCAS) é o principal sistema atmosférico responsável pela precipitação de verão na região central do Brasil, estando intrinsecamente relacionado com extremos de precipitação e desastres hidrometeóricos. Com cerne nesse cenário, o presente artigo tem por objetivo apresentar a principal contribuição que a literatura recente trás sobre a temática, considerando aspectos como variabilidade climática, impactos e sua previsibilidade. A metodologia incluiu a busca por palavras-chave em artigos revisados por pares na base de dados da CAPES, entre 2018 e 2023. Através desta 21 artigos foram selecionados. Os resultados indicam que a maioria dos estudos associam a ZCAS à variabilidade, foram identificados padrões de circulação atmosférica distintos em diferentes níveis atmosféricos. O artigo analisa também a distribuição geográfica dos estudos, destacando a predominância de autores brasileiros. A discussão dos resultados apresentados nos artigos revelou tendências significativas nos padrões de circulação atmosférica e distribuição temporal dos episódios de ZCAS, os quais são responsáveis por 56% da precipitação observada no mês de março, na região Sudeste do Brasil, estando associados a eventos extremos e desastres, como inundações e deslizamentos de terra. Dessa forma, o estudo contribui para a compreensão dos mecanismos que governam a ZCAS e seus impactos, fornecendo uma base sólida para futuras investigações e aprimoramento de políticas públicas de mitigação de desastres naturais relacionados a este fenômeno climático, considerando uma abordagem abrangente e multidisciplinar.

Downloads

Não há dados estatísticos.

Biografia do Autor

Ian Verdan, Programa de Pós-Graduação em Ciência do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais (INPE)

Doutorando no Programa de Pós-Graduação em Ciência do Sistema Terrestre do Instituto Nacional de Pesquisas Espaciais, INPE. Mestre em Geografia Física pela Universidade de São Paulo, USP, com ênfase em Climatologia e Meteorologia. Possui graduação em Geografia (licenciatura e bacharelado) pela Universidade do Estado do Rio de Janeiro, UERJ. Estagiou na Prefeitura Municipal de Duque de Caxias (PMDC), atuando na área de Planejamento Urbano através da análise quantitativa dos distintos usos do solo. Foi bolsista no grupo de pesquisas Núcleo de Estudos de Geografia Fluminense da Universidade do Estado do Rio de Janeiro, e foi integrante do Projeto de Extenção Trilha Sensorial Piloto: Inclusão Social e Educação Ambiental na Floresta, no qual trabalhava em equipe para a confecção de mapas táteis a serem utilizados por alunos com deficiência visual. Ainda foi monitor da disciplina Climatologia I e Pedologia II, ambos na UERJ.

Referências

ALVES, L. M. Análise Estatística da sazonalidade e tendências das estações chuvosas e seca na Amazônia: Clima Presente E Projeções Futuras. [s.l.] INPE, 2016.

BOCHOW, N.; BOERS, N. The South American monsoon approaches a critical transition in response to deforestation. Science Advances, v. 9, n. 40, p. 1–13, 2023. DOI: https://doi.org/10.1126/sciadv.add9973

BOMBARDI, R. J. et al. Precipitation over eastern South America and the South Atlantic Sea surface temperature during neutral ENSO periods. Climate Dynamics, v. 42, n. 5–6, p. 1553–1568, 15 mar. 2014. DOI: https://doi.org/10.1007/s00382-013-1832-7

BRAGA, H. A.; AMBRIZZI, T. A Variabilidade Intrassazonal e Interanual do Acoplamento entre a Zona de Convergência do Atlântico Sul e o Vórtice Ciclônico de Altos Níveis. Revista Brasileira de Meteorologia, v. 37, n. 3, p. 305–311, set. 2022. DOI: https://doi.org/10.1590/0102-77863730060

BRASILIENSE, C. S. et al. Synoptic analysis of an intense rainfall event in Paraíba do Sul river basin in southeast Brazil. Meteorological Applications, v. 25, n. 1, p. 66–77, 23 jan. 2018. DOI: https://doi.org/10.1002/met.1670

CAI, W. et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nature Reviews Earth & Environment, v. 1, p. 215–231, 2020. DOI: https://doi.org/10.1038/s43017-020-0040-3

CARPENEDO, C. B. et al. Atmospheric circulation patterns associated with surface air temperature variability trends between the Antarctic Peninsula and South America. Anais da Academia Brasileira de Ciências, v. 95, n. suppl 3, 2023. DOI: https://doi.org/10.1590/0001-3765202320220591

CARVALHO, L. M. V.; JONES, C.; LIEBMANN, B. Extreme Precipitation Events in Southeastern South America and Large-Scale Convective Patterns in the South Atlantic Convergence Zone. Journal of Climate, v. 15, n. 17, p. 2377–2394, set. 2002. DOI: https://doi.org/10.1175/1520-0442(2002)015<2377:EPEISS>2.0.CO;2

CARVALHO, L. M. V.; JONES, C.; LIEBMANN, B. The South Atlantic Convergence Zone: Intensity, Form, Persistence, and Relationships with Intraseasonal to Interannual Activity and Extreme Rainfall. Journal of Climate, v. 17, n. 1, p. 88–108, 2004. DOI: https://doi.org/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2

CAVALCANTI, I. F. A.; AMBRIZZI, T. Teleconexões e suas influencias no Brasil. In: Clima das regiões brasileiras e variabilidade climática. 1. ed. São Paulo: Oficina de Texto, 2021. p. 145–161.

CAVALCANTI, I. F. A.; SHIMIZU, M. H. Climate Fields over South America and Variability of SACZ and PSA in HadGEM2-ES. American Journal of Climate Change, v. 01, n. 03, p. 132–144, 2012. DOI: https://doi.org/10.4236/ajcc.2012.13011

CHANG, H. K. et al. Groundwater isotope ratios reflect convective and stratiform (paleo)precipitation fractions in Brazil. Journal of Hydrology, v. 585, p. 124801, jun. 2020. DOI: https://doi.org/10.1016/j.jhydrol.2020.124801

COELHO, L. A. F.; NUNES, A. B. Eventos Recentes De Chuva Intensa Na Cidade Do Rio De Janeiro: Análise Sinótica. Revista Brasileira de Geografia Física, v. 13, n. 3, p. 994–1012, 1 jun. 2020. DOI: https://doi.org/10.26848/rbgf.v13.3.p994-1012

CORREIA FILHO, W. L. F. et al. Diagnóstico da Precipitação e EVI em Dois Eventos de Seca no Nordeste do Brasil. Revista do Departamento de Geografia - USP, v. 35, p. 102–112, 24 jul. 2018. DOI: https://doi.org/10.11606/rdg.v35i0.140068

DA FONSECA AGUIAR, L.; CATALDI, M. Social and environmental vulnerability in Southeast Brazil associated with the South Atlantic Convergence Zone. Natural Hazards, v. 109, n. 3, p. 2423–2437, 14 dez. 2021. DOI: https://doi.org/10.1007/s11069-021-04926-z

DA SILVA, F. P. et al. Synoptic thermodynamic and dynamic patterns associated with Quitandinha River flooding events in Petropolis, Rio de Janeiro (Brazil). Meteorology and Atmospheric Physics, v. 131, n. 4, p. 845–862, 2019. DOI: https://doi.org/10.1007/s00703-018-0609-2

DRUMOND, A. R. DE M.; AMBRIZZI, T. The role of SST on the South American atmospheric circulation during January, February and March 2001. Climate Dynamics, v. 24, n. 7–8, p. 781–791, 13 jun. 2005. DOI: https://doi.org/10.1007/s00382-004-0472-3

DUTRA, F. R. L. S. et al. Associações entre a Zona de Convergência do Atlântico Sul e o El Niño e sua influência sobre a distribuição espaçotemporal da leptospirose em Minas Gerais. Hygeia - Revista Brasileira de Geografia Médica e da Saúde, v. v. 14, n. n. 27, p. 1–13, 2018. DOI: https://doi.org/10.14393/Hygeia142701

ESCOBAR, G. C. J. Zona de Convergência do Atlântico Sul (ZCAS): Critério de Detecção para Uso em Centros Operacionais de Previsão de Tempo. Instituto Nacional de Pesquisas Espaciais - INPE, p. 19, 2019.

ESCOBAR, G. C. J.; DE ALMEIDA MARQUES, A. C.; DERECZYNSKI, C. P. Synoptic patterns of South Atlantic Convergence Zone episodes associated with heavy rainfall events in the city of Rio de Janeiro, Brazil. Atmósfera, v. 35, n. 2, p. 287–305, 1 abr. 2022. DOI: https://doi.org/10.20937/ATM.52942

FERREIRA, N. J.; SANCHES, M. B.; SILVA DIAS, M. A. F. DA. Composição da Zona de Convergência do Atlântico Sul em períodos de El Niño e La Niña. Revista Brasileira de Meteorologia, v. v. 19, p. 89–98, 2004.

FIALHO, W. M. B. et al. Mechanisms controlling persistent South Atlantic Convergence Zone events on intraseasonal timescales. Theoretical and Applied Climatology, v. 152, n. 1–2, p. 75–96, abr. 2023. DOI: https://doi.org/10.1007/s00704-023-04375-7

GRIMM, A. M. How do La Ni�a events disturb the summer monsoon system in Brazil? Climate Dynamics, v. 22, n. 2–3, p. 123–138, 1 mar. 2004. DOI: https://doi.org/10.1007/s00382-003-0368-7

GRIMM, A. M.; TEDESCHI, R. G. ENSO and Extreme Rainfall Events in South America. Journal of Climate, v. 22, n. 7, p. 1589–1609, 1 abr. 2009. DOI: https://doi.org/10.1175/2008JCLI2429.1

HAM, Y. et al. Inter‐Basin Interaction Between Variability in the South Atlantic Ocean and the El Niño/Southern Oscillation. Geophysical Research Letters, v. 48, n. 15, 5 ago. 2021. DOI: https://doi.org/10.1029/2021GL093338

IPCC. Climate Change 2021: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge e New York: [s.n.].

JONES, C.; CARVALHO, L. M. V. Climate Change in the South American Monsoon System: Present Climate and CMIP5 Projections. Journal of Climate, v. 26, n. 17, p. 6660–6678, 1 set. 2013. DOI: https://doi.org/10.1175/JCLI-D-12-00412.1

KODAMA, Y.-M. Large-Scale Common Features of Sub-Tropical Convergence Zones (the Baiu Frontal Zone, the SPCZ, and the SACZ) Part II: Conditions of the Circulations for Generating the STCZs. Journal of the Meteorological Society of Japan. Ser. II, v. 71, n. 5, p. 581–610, 1993. DOI: https://doi.org/10.2151/jmsj1965.71.5_581

KODAMA, Y. Large-Scale Common Features of Subtropical Precipitation Zones (the Baiu Frontal Zone, the SPCZ, and the SACZ) Part I: Characteristics of Subtropical Frontal Zones. Journal of the Meteorological Society of Japan. Ser. II, v. 70, n. 4, p. 813–836, 1992. DOI: https://doi.org/10.2151/jmsj1965.70.4_813

LIN, J.; QIAN, T. A New Picture of the Global Impacts of El Nino-Southern Oscillation. Scientific Reports, v. 9, n. 1, p. 17543, 2019. DOI: https://doi.org/10.1038/s41598-019-54090-5

LYRA, M. J. A.; ARRAUT, J. M. Estudo Sinótico e da Estrutura Vertical de um Vórtice Ciclônico de Altos Níveis Ocorrido em Janeiro de 2016. Revista Brasileira de Meteorologia, v. 38, 2023. DOI: https://doi.org/10.1590/0102-77863810092

MARENGO, J. A. et al. A seca e a crise hídrica de 2014-2015 em São Paulo. Revista USP, n. 106, p. 31, 2 set. 2015. DOI: https://doi.org/10.11606/issn.2316-9036.v0i106p31-44

MCPHADEN, M. J. El Niño and La Niña: Causes and Global Consequences. Encyclopedia of Global Environmental Change, v. 1, 2002.

MONTINI, T. L.; JONES, C.; CARVALHO, L. M. V. The South American Low‐Level Jet: A New Climatology, Variability, and Changes. Journal of Geophysical Research: Atmospheres, v. 124, n. 3, p. 1200–1218, 16 fev. 2019. DOI: https://doi.org/10.1029/2018JD029634

NIELSEN, D. M. et al. Dynamics-based regression models for the South Atlantic Convergence Zone. Climate Dynamics, v. 52, n. 9–10, p. 5527–5553, 2019. DOI: https://doi.org/10.1007/s00382-018-4460-4

OLIVEIRA, K. S. S.; QUARESMA, V. D. S. Condições típicas de vento sobre a região marinha adjacente à costa do Espírito Santo. Revista Brasileira de Climatologia, v. 22, 25 jun. 2018. DOI: https://doi.org/10.5380/abclima.v22i0.51563

POUR, S. H. et al. Low impact development techniques to mitigate the impacts of climate-change-induced urban floods: Current trends, issues and challenges. Sustainable Cities and Society, v. 62, p. 102373, 2020. DOI: https://doi.org/10.1016/j.scs.2020.102373

REBOITA, M. S. et al. Ciclo de Vida do Sistema de Monção da América do Sul: Clima Presente e Futuro. Revista Brasileira de Geografia Física, v. 15, p. 343–358, 2022a.

REBOITA, M. S. et al. Ciclo de Vida do Sistema de Monção da América do Sul: Clima Presente e Futuro. Revista Brasileira de Geografia Física, v. 15, n. 1, p. 343–358, 23 mar. 2022b. DOI: https://doi.org/10.26848/rbgf.v15.1.p343-358

ROSA, E. B. et al. Automated Detection Algorithm for SACZ, Oceanic SACZ, and Their Climatological Features. Frontiers in Environmental Science, v. 8, 25 fev. 2020. DOI: https://doi.org/10.3389/fenvs.2020.00018

SATYAMURTY, P.; ROSA, M. B. Synoptic climatology of tropical and subtropical South America and adjoining seas as inferred from Geostationary Operational Environmental Satellite imagery. International Journal of Climatology, v. 40, n. 1, p. 378–399, 21 jan. 2020. DOI: https://doi.org/10.1002/joc.6217

SILVA, J. P. R.; REBOITA, M. S.; ESCOBAR, G. C. J. Caracterização da Zona de Convergência do Atlântico Sul em Campos Atmosféricos Recentes. Revista Brasileira de Climatologia, v. 25, n. 2237–8642, 9 set. 2019. DOI: https://doi.org/10.5380/abclima.v25i0.64101

SILVA, J. P. R.; YNOUE, R. Y. Mesoscale Cyclonic Vortices Embedded in the South Atlantic Convergence Zone Associated with Natural Disasters in the State of São Paulo, Brazil. Anuário do Instituto de Geociências, v. 46, 2023. DOI: https://doi.org/10.11137/1982-3908_2023_46_53097

SILVA, P. N.; ESCOBAR, G. C. J.; REBOITA, M. S. Eventos extremos de precipitação no Estado de Minas Gerais associados com a ocorrência de episódios de Zona de Convergência do Atlântico Sul. Revista Brasileira de Geografia Física, v. 13, n. 3, p. 1013–1023, 2020. DOI: https://doi.org/10.26848/rbgf.v13.3.p1013-1023

TEDESCHI, R. G.; CAVALCANTI, I. F. A.; GRIMM, A. M. Influences of two types of ENSO on South American precipitation. International Journal of Climatology, v. 33, n. 6, p. 1382–1400, 30 maio 2013. DOI: https://doi.org/10.1002/joc.3519

TEODORO, T. A. et al. Climate Change Impacts on the South American Monsoon System and Its Surface–Atmosphere Processes Through RegCM4 CORDEX-CORE Projections. Earth Systems and Environment, v. 5, n. 4, p. 825–847, 27 dez. 2021. DOI: https://doi.org/10.1007/s41748-021-00265-y

VERDAN, I.; OSCAR JÚNIOR, A. C. DA S. Análise Episódica do Downburst do dia quatorze de fevereiro de 2018, no município do Rio de Janeiro. Revista Brasileira de Climatologia, v. 32, p. 441–462, 6 mar. 2023. DOI: https://doi.org/10.55761/abclima.v32i19.16205

VERDAN, I.; SILVA, M. E. S. Variabilidade da Zona de Convergência do Atlântico Sul em relação a eventos ENOS de 2000 a 2021. Geography Department University of Sao Paulo, v. 42, p. e193110, 18 out. 2022. DOI: https://doi.org/10.11606/eISSN.2236-2878.rdg.2022.193110

VIEGAS, J. et al. Caracterização dos Diferentes Tipos de El Niño e seus Impactos na América do Sul a Partir de Dados Observados e Modelados. Revista Brasileira de Meteorologia, v. 34, p. 43–67, 2019. DOI: https://doi.org/10.1590/0102-7786334015

WORLD METEOROLOGICAL ORGANIZATION. El Niño/ Southern Oscillation. Geneva: World Meteorological Organization, 2014.

YANG, S. et al. El Niño–Southern Oscillation and its impact in the changing climate. National Science Review, v. 5, n. 6, p. 840–857, 1 nov. 2018. DOI: https://doi.org/10.1093/nsr/nwy046

ZILLI, M. T.; CARVALHO, L. M. V.; LINTNER, B. R. The poleward shift of South Atlantic Convergence Zone in recent decades. Climate Dynamics, v. 52, n. 5–6, p. 2545–2563, 30 mar. 2019. DOI: https://doi.org/10.1007/s00382-018-4277-1

Downloads

Publicado

05-02-2025

Como Citar

Verdan, I. (2025). Zona de Convergência do Atlântico Sul: uma revisão sistemática e de discurso. Revista Brasileira De Climatologia, 36(21), 313–339. https://doi.org/10.55761/abclima.v36i21.19013

Edição

Seção

Artigos