Sustainable Bioclimatic Strategies for Riverside Dwellings in the Brazilian Amazon
DOI:
https://doi.org/10.55761/abclima.v31i18.15775Resumo
The present research presents an unprecedented study, which verified bioclimatic strategies for the riverside region of the Brazilian Amazon, through the analysis of the international literature, data collection and qualitative analysis of the microclimatic situation of a local stilt house and the thermoenergetic simulation of the strategies presented in the literature. The results show that the dwelling analyzed presents internal values of air temperature and relative humidity that are constantly high, as well as low values of wind speed. On the other hand, the simulations pointed out efficient and economically feasible strategies to improve the comfort conditions of the analyzed dwelling and also provided an analysis of the internal microclimatic situation of the same dwelling if it were built with another typology. We conclude that human comfort conditions can be improved with the adoption of viable and easily implemented solutions.
Downloads
Referências
ALVARES, C. A.; STAPE, J.L.; SENTELHAS, P.C.; GONÇALVES, J.L.M.; SPAROVEK, G. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift. v. 22: 711-728, 2013.
American Society of Heating, Refrigerating an Air-Conditioning Engineers, Inc. ASHRAE 55, Thermal Environmental Conditions for Human Occupancy. Atlanta, GA. 2010.
CÂNDIDO, C.; LAMBERTS, R.; BITTENCOURT, L.; DE DEAR, R. Aplicabilidade dos limites da velocidade do ar para efeito de conforto térmico em climas quentes e úmidos. Ambiente Construído, Porto Alegre, v. 10, n. 4, p. 59-68, out./dez. 2010a.
CÂNDIDO, C.; DE DEAR, R; LAMBERTS, R.; BITTENCOURT, L. Air movement acceptability limits and thermal comfort in Brazil’s hot humid climate zone. Building and Environment, 45, p. 222–229, 2010b.
CELUPPI, M. C; MEIRELLES, C. R. M. ; CYMROT, R. ; DE ALENCAR BORST, B. ; GOBO, J. P. A. . Preliminary Approach to The Analysis of Climate Perception and Human Thermal Comfort for Riverside Dwellings in The Brazilian Amazon. Journal of Building Engineering, v. 23, p. 77-89, 2019.
CHENG, V.; NG, E.; GIVONI, B. Effect of envelope colour and thermal mass on indoor temperatures in hot humid climate. Solar Energy, 78, p. 528–534, 2005.
CHUNGLOO, S.; LIMMEECHOKCHAI, B. Application of passive cooling systems in the hot and humid climate: The case study of solar chimney and wetted roof in Thailand. Building and Environment. 42, p. 3341–3351, 2007.
DE DEAR, R.; LEOW, K.G.; FOO, S.C. Thermal comfort in the humid tropics: Field experiments in air conditioned and naturally ventilated buildings in Singapore. International Journal of Biometeorology, 34:259-265, 1991.
DJAMILA, H.; CHU, C.; KUMARESAN, S. Field study of thermal comfort in residential buildings in the equatorial hot-humid climate of Malaysia. Building and Environment, 62, p. 133-142, 2013.
DUBREUIL, V.; FANTE, K.P.; PLANCHON, O.; SANT’ANNA NETO, J.L. Climate change evidence in Brazil from Köppen’s climate annual types frequency. Int. J. Climatol., 39, 1446–1456, 2018.
FREIRE, M. R.; TAHARA, A.; GUIMARAES, A.; AMORIM, A. Uso do Ecotec e DesignBuilder na projetação arquitetônica para fins de avaliação de desempenho térmico por via passivas. In: Anais: XII Encac: Encontro Nacional do Conforto no Ambiente Construído, VIII ELACAC: Encontro Latino Americano de Conforto no Ambiente Construído. Brasília, 2013.
FRONTCZAK, M.; WARGOCKI, P. Literature survey on how different factors influence human comfort in indoor environments. Building and Environment, 46, p. 922-937. 2011.
GIVONI, B. Building design principles for hot humid regions. Renewable Energy, vol.5, parte II, p. 906-916, 1994.
GOBO, J. P. A.; GALVANI, E.; WOLLMANN, C. A. Influência do clima regional sobre o clima local a partir do diagnóstico de abrangência espacial e extrapolação escalar. Revista Brasileira de Climatologia, v. 22, p. 210-228, 2018.
GROTH, A.; GHIL, M. Multivariate singular spectrum analysis and the road to phase synchronization. Phys. Rev., E., 84, 2011.
______; GHIL, M. Monte Carlo SSA revisited: Detecting oscillator clusters in multivariate data sets. Journal of Climate, v. 28:19, p. 7873–7893, 2015.
HWANG, R.; CHENG, M.; LIN, T.; HO, M. Thermal perceptions, general adaptation methods and occupant’s idea about the trade-off between thermal comfort and energy saving in hot–humid regions. Building and Environment, V. 44, p. 1128–1134, 2009.
INMET. Instituto Nacional de Meteorologia. Banco de Dados Meteorológicos. Disponível em: <https://bdmep.inmet.gov.br/>. Acesso em: 2 de agosto de 2017.
Internacional Organization Standardization - ISO 7730. Moderate therman environments: determination of the PMV and PPD indices and specification of the conditions for thermal comfort. Genève, 2005.
JAJCAY, N.; HLINKA, J.; KRAVTSOV, S.; TSONIS, A.; PALUS, M. Time scales of the European surface air temperature variability: The role of the 7-8 year cycle. Geophysical Research Letters, 43, p.902-909, 2016.
KUBOTA, T; CHYEE, D. T. H.; AHMAD, S. The effects of night ventilation technique on indoor thermal environment for residential buildings in hot-humid climate of Malaysia. Energy and Buildings, 41, p. 829–839, 2009.
LabEEE – Laboratório de Eficiência Energética em Edificações. Disponível em: <http://www.labeee.ufsc.br/downloads/arquivosclimaticos/inmet2015>, acesso em: 20 de agosto de 2018.
LIPING, W.; HIEN, W. N. The impacts of ventilation strategies and facade on indoor termal environment for naturally ventilated residential buildings in Singapore. Building and Environment, 42, p. 4006–4015, 2007.
LÔBO, D. G. F.; BITTENCOURT, L. S. A influência dos captadores de vento na ventilação natural de habitações populares localizadas em climas quentes e úmidos. Ambiente Construído, Porto Alegre, v. 3, n. 2, p. 57-67, abr./jun. 2003.
LUCAS, F.; ADELARD, L.; GARDE, F.; BOYER, H. Study of moisture in buildings for hot humid climates. Energy and Buildings, 1382, p. 1–11, 2001.
MONTEIRO, C. A. F. Teoria e clima urbano. Série Teses e Monografias, 25. São Paulo: Instituto de Geografia/USP, 1976, 181p.
NEMATCHOUA, M. K.; TCHINDA, R.; OROSA, J. A.; ANDREASI, W. A. Effect of wall construction materials over indoor air quality in humid and hot climate. Journal of Building Engineering, V. 3, p. 16–23, 2015.
NGUYEN, A. T.; SINGH, M. K.; REITER, S. An adaptive thermal comfort model for hot humid southeast Asia. Building and Environment, 56, p.291–300, 2012.
OKE, T. R. Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites. IOM Report, 81, 2004.
PACCINI, L., ESPINOZA, J.C., RONCHAIL, J. AND SEGURA, H. (2018) Intra‐seasonal rainfall variability in the Amazon basin related to large‐scale circulation patterns: a focus on western Amazon–Andes transition region. International Journal of Climatology, 38, 2386– 2399.
PALUŠ, M. Cross-scale interactions and information transfer. Entropy, 16, p.5263-5289, 2014.
RIBEIRO, A. G. As escalas do clima. Boletim de Geografia Teorética, v. 23, n. 45-46, p.288-294, 1993.
SANUSI, A. N. Z.; SHAO, L.; IBRAHIM, N. Passive ground cooling system for low energy buildings in Malaysia (hot and humid climates). Renewable Energy. 49, p. 193-196, 2013.
SIMONSON, C. J.; SALONVAARA, M.; OJANEN, T. The effect of structures on indoor humidity – possibility to improve comfort and perceived air quality. Indoor Air, V. 12, p. 243–251, 2002.
SYNNEFA, A; SANTAMOURIS, M.; AKBARI, H. Estimating the effect of using cool coatings on energy loads and termal comfort in residential buildings in various climatic conditions. Energy and Buildings, 39, p. 1167–1174, 2007.
TOE, D. H. C.; KUBOTA T. Comparative assessment of vernacular passive cooling techniques for improving indoor thermal comfort of modern terraced houses in hot–humid climate of Malaysia. Solar Energy, 114, p. 229–258, 2015.
WOLOSZYN, M.; KALAMEES, T.; ABADIE, M. C.; STEEMAN, M.; KALAGASIDIS, A. S. The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings. Building and Environment, 44, p. 515– 524, 2009.
WONG, N.H.; FERIADI, H.; LIM, P.Y.; THAM, K.W.; SEKHAR, C.; CHEONG, K.W. Thermal comfort evaluation of naturally ventilated public housing in Singapore. Building and Environment, 37, p. 1267 – 1277, 2002.
YILDIZ, Y.; ARSAN, Z. D. Identification of the building parameters that influence heating and cooling energy loads for apartment buildings in hot-humid climates. Energy, 36, p. 4287-4296, 2011.
ZAIN, Z. M.; TAIB, M. N.; BAKI, S. M. S. Hot and humid climate: prospect for thermal comfort in residential building. Desalination, 209, p. 261–268, 2007.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
A aprovação dos artigos implica a aceitação imediata e sem ônus de que a Revista Brasileira de Climatologia terá exclusividade na primeira publicação do artigo. Os autores continuarão, não obstante, a deter os direitos autorais. Os autores autorizam também que seus artigos sejam disponibilizados em todos os indexadores aos quais a revista está vinculada.
Os autores mantém seus direitos de publicação sem restrições
A Comissão Editorial não se responsabiliza pelos conceitos ou afirmações expressos nos trabalhos publicados, que são de inteira responsabilidade dos autores.
A Revista Brasileira de Climatologia oferece acesso livre imediato ao seu conteúdo, seguindo o entendimento de que disponibilizar gratuitamente o conhecimento científico ao público proporciona maior democratização do conhecimento e tende a produzir maior impacto dos artigos publicados. Os artigos publicados na revista são disponibilizados segundo a Licença Creative Commons CC-BY-NC 4.0 (https://creativecommons.org/licenses/by-nc/4.0/). Segundo essa licença é permitido acessar, distribuir e reutilizar os artigos para fins não comerciais desde que citados os autores e a fonte. Ao submeter artigos à Revista Brasileira de Climatologia, os autores concordam em tornar seus textos legalmente disponíveis segundo essa licença