Urban morphology and prediction models of microclimatic phenomena in dry atmospheric context
DOI:
https://doi.org/10.55761/abclima.v31i18.15707Palavras-chave:
Predicción Modelo Microclimático, Zonas Climáticas Locales, Isla de Calor UrbanoResumo
The morphological configuration of cities has a direct influence on microclimatic variation. The predominant built composition in certain areas, the high rates of waterproofed surfaces, vegetation scarcity and water surfaces can have a significant impact on the temperature and humidity values on inhabited areas, often exposing the population on unhealthy environments. The aim of this paper is to elaborate a prediction microclimatic model variation of four different Local Climate Zones (LCZ) exposed to a dry atmospheric condition in an altitude tropical region. The method was developed on three stages, the first one, refers to a collect campaign of temperature and humidity variation in four different urban environments, LCZ D, LCZ 1, LCZ 5 and LCZ 9 in São José do Rio Preto, Brazil. The representative microclimatic behavior of each area of the city in relation to the performance of a dry air mass was recorded. The second stage involved the microclimatic collected data, which were submitted to a statistical analysis with ANOVA tests, serving as the basis for the development of prediction microclimatic models variation for each LCZs. After validating the models, it was verified, in the third stage, the urban area that presented morphological characteristics that allow the occurrence of high temperature waves and reduced indexes of relative humidity. The produced models for predicting urban microclimatic show a very high capacity of representation to estimate the temperature values in different areas of the city, since in all cases values of R exceed 80%. The results showed that the area with LCZ5 presents the longest periods of heat exposure, which should receive more attention from planners in relation to investments in urban green infrastructure.
Downloads
Referências
ARNFIELD, A. J. Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, United Kingdom, v. 23, n. 1, p. 1-26, 2003.
BUENO, B., HIDALGO, J., PIGEON, G. G., NORFORD, L., MASSON, V. Calculation of Air Temperatures above the Urban Canopy Layer from Measurements at a rural Operational Weather Station. Journal of Applied Meteorology and Climatology, United States, v. 52, n. 2, p. 472-483, 2013.
BUENO, B., ROTH, M., NORFORD, L., LI, R. Computationally efficient prediction of canopy level urban air temperature at the neighbourhood scale. Urban Climate, Netherlands, v. 9, p. 35-53, 2014.
CHEN, F., KUSAKA, H., BORNSTEIN, R., CHING, J., GRIMMOND, C. S. B., GROSSMAN-CLARKE, S., SAILOR, D. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. International Journal of Climatology, United Kingdom, v. 31, n. 2, p. 273-288, 2011.
CHING, J., ROTUNNO, R., LEMONE, M., MARTILLI, A., KOSOVIC, B., JIMENEZ, P.A., DUDHIA, J. Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models. Monthly Weather Review, United States, v. 142, n. 9, p. 3284–3302, 2014.
ERELL, E., PEARLMUTTER, D., BONEH, D., KUTIEL, P. B. Effect of high-albedo materials on pedestrian heat stress in urban street canyons. Urban Climate, Netherlands, v.10, p. 367–386, 2014.
GARUMA, Gemechu Fanta. Review of urban surface parameterizations for numerical climate models. Urban Climate, Netherlands, v. 24, p. 830-851, 2018.
GOBAKISA, K., KOLOKOTSAB, D., SYNNEFAC, A., SALIARI, M., GIANNOPOULOUC, K., SANTAMOURIS, M. Development of a model for urban heat island prediction using neural network techniques. Sustainable Cities and Society, Netherlands, v. 1, n. 2, p. 104– 115, 2011.
HEBBERT, Michael. Climatology for city planning in historical perspective. Urban Climate, Netherlands, v. 10, p. 204-215, 2014.
HO, H., C., KNUDBY, A., SIROVYAK P., XUB Y., HODUL M., HENDERSON, S., B. The spatial regression approach appears useful for mapping intraurban air temperature variability and can easily be applied to other cities. Remote Sensing of Environment, United States, v. 154, p. 38-45, 2014.
HOLLÓSI, B., ŽUVELA-ALOISE, M., OSWALD, S. Applying urban climate model in prediction mode—evaluation of MUKLIMO_3 model performance for Austrian cities based on the summer period of 2019. Theoretical and Applied Climatology, Austria, v. 144, p. 1181–1204, 2021.
JIHAD, A. S., TAHIRI, M. Modeling the urban geometry influence on outdoor thermal comfort in the case of Moroccan microclimate. Urban Climate, Netherlands, v. 16, p. 25–42, 2016.
KOUTROUMANOU-KONTOSI, K., CARTALIS, C., PHILIPPOPOULOS, K., AGATHANGELIDIS, I., POLYDOROS, A. A Methodology for Bridging the Gap between Regional- and City-Scale Climate Simulations for the Urban Thermal Environment. Climate, Switzerland, v. 10, n. 106, 2022.
KRÜGER, E. Impact of site-specific morphology on outdoor thermal perception: A case-study in a subtropical location. Urban Climate, Netherlands, v. 21, p. 123-135, 2017.
KRÜGER, E., PEARLMUTTER, D., RASIA, F. Evaluating the impact of canyon geometry and orientation on cooling loads in a high-mass building in a hot dry environment. Applied Energy, United Kingdom, v. 87, n.6, p. 2068–2078, 2010.
LÁSZLÓ, E., SZEGEDI S. A multivariate linear regression model of mean maximum urban heat island: a case study of Beregszász (Berehove), Ukraine. Quarterly Journal of the Hungarian Meteorological Service, Hungary, v. 119, n. 3, p. 409–423, jul./sep., 2015.
MATZARAKIS, A. Rayman 1.2. Available at: http://www.mif.uni-freiburg.de/rayman/intro.htm 2009. Accessed on 15 jan., 2014.
MATZARAKIS, A., RUTZ, F., MAYER, H. Modelling radiation fluxes in simple and complex environments – Basics of the RayMan model. International Journal of Biometeorology, Germany, v. 54, p. 131-139, mar., 2010.
MIDDEL, A., HÄB, K., BRAZEL, A. J., MARTIN C., A., GUHATHAKURTA, S. Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landscape and Urban Planning, Netherlands, v. 122, p. 16–28, 2014.
MILLS, G., CLEUGH, H., EMMANUEL, R., ENDLICHERD, W., ERELLE, E., MCGRANAHANF G., NGG, E., NICKSONH, A., ROSENTHALI, J., STEEMER, K. Climate Information for Improved Planning and Management of Mega Cities (Needs Perspective). Procedia Environmental Sciences, United Kingdom, v. 1, p. 228–246, 2010.
MILLS, G., BECHTEL, B., CHING J., SEE L., FEDDEMA J., FOLEY, M., ALEXANDER, P., O’CONNOR, M. An Introduction to the WUDAPT project. In: ICUC9 - 9th International Conference on Urban Climate. 12th Symposium on the Urban Environment. Meteo France, Toulouse, France, 2015.
NG, E. Policies and technical guidelines for urban planning of high-density cities – air ventilation assessment (AVA) of Hong Kong. Building and Environment, United Kingdom, n. 44, p. 1478-1488, 2009.
NG, E., CHEN, L., WANG, Y., YUAN, C. A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Building and Environment, United Kingdom, n. 47, p. 256-271, 2012.
NIMER, E. Climatologia do Brasil. 4.ed. Brasil: Fundação IBGE, 2008.
OKE, T. Towards better communication in urban climate. Theoretical and Applied Climatology, Austria, n. 84, p.179–190, 2006.
ONSET. Field Monitoring System. Available at: https://www.onsetcomp.com/products/data-loggers/weather-stations. Accessed on 21 Jul. 2022.
PEEL, M. C., FINLAYSON, B. L., MCMAHON, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, Germany, n. 11, p. 1633-1644, 2007.
SALAMANCA, F., MARTILLI, A., TEWARI, M., CHEN, F. A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. Journal of Applied Meteorology and Climatology, United States, v. 50, n. 5, p. 1107–1128, 2011.
São Jose do Rio Preto - SJRP. Prefeitura Municipal de São José do Rio Preto. (2022). Available at: https://www.riopreto.sp.gov.br/. Accessed on 23 Jan. 2022.
São Jose do Rio Preto – SJRP. Prefeitura Municipal de São José do Rio Preto. (2019). Available at: https://www.riopreto.sp.gov.br/wp-content/uploads/arquivosPortalGOV/mapas-rio-preto/134858_MAPA-ZONEAMENTO-USO-E%20OCUPA%C3%87%C3%83O-DO%20SOLO-16-01-19.pdf. Accessed on 13 Jan. 2021.
São Jose do Rio Preto – SJRP. Prefeitura Municipal de São José do Rio Preto. (2018). Available at: https://latitudelongitude.org/br/sao-jose-do-rio-preto/. Accessed on 15 Jan. 2020.
STEWART, I. D., OKE, T. R., KRAYENHOFF, E. S. Evaluation of the ‘local climate zone' scheme using temperature observations and model simulations. Int. J. Biometeorology, Germany, v. 34, n. 4, p. 1062–1080, 2014.
STEWART, I. D., OKE, T. R. Local Climate Zones for Urban Temperature Studies. Bulletin of American Meteorological Society, United States, n. 93, p. 1879–1900, 2012.
TSIROS, I. X. Assessment and energy implications of street air temperature cooling by shade trees in Athens (Greece) under extremely hot weather conditions. Renewable Energy, United Kingdom, n. 35, p.1866–1869, 2010.
WANG, X., DAI, W. Development of fine-scale urban canopy parameters in Guangzhou city and its application in the WRF-Urban model. In: ICUC9 - 9th International Conference on Urban Climate. 12th Symposium on the Urban Environment. Meteo France, Toulouse, France, 2015.
WONG, N. H., JUSUF, S. K., TAN, C. L. Integrated urban microclimate assessment method as a sustainable urban development and urban design tool. Landscape and Urban Planning, Netherlands, v. 100, p. 386–389, 2011.
XU, Y., REN, C., MAD, P., HOC, J., WANG, W., KA-LUN LAU, K., LIND, H., NG, E. Urban morphology detection and computation for urban climate research. Landscape and Urban Planning, Netherlands, v. 167, p. 212–224, 2017.
YANG, X., ZHAO, L., BRUSE, M., & MENG, Q. Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces. Building and Environment, United Kingdom, v. 60, p. 93–104, 2013.
YUAN, C., NG, E., CHEN, L., REN, C., FUNG, J. Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong. Landscape and Urban Planning, Netherlands, v. 101, p. 59 – 74, 2011.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
A aprovação dos artigos implica a aceitação imediata e sem ônus de que a Revista Brasileira de Climatologia terá exclusividade na primeira publicação do artigo. Os autores continuarão, não obstante, a deter os direitos autorais. Os autores autorizam também que seus artigos sejam disponibilizados em todos os indexadores aos quais a revista está vinculada.
Os autores mantém seus direitos de publicação sem restrições
A Comissão Editorial não se responsabiliza pelos conceitos ou afirmações expressos nos trabalhos publicados, que são de inteira responsabilidade dos autores.
A Revista Brasileira de Climatologia oferece acesso livre imediato ao seu conteúdo, seguindo o entendimento de que disponibilizar gratuitamente o conhecimento científico ao público proporciona maior democratização do conhecimento e tende a produzir maior impacto dos artigos publicados. Os artigos publicados na revista são disponibilizados segundo a Licença Creative Commons CC-BY-NC 4.0 (https://creativecommons.org/licenses/by-nc/4.0/). Segundo essa licença é permitido acessar, distribuir e reutilizar os artigos para fins não comerciais desde que citados os autores e a fonte. Ao submeter artigos à Revista Brasileira de Climatologia, os autores concordam em tornar seus textos legalmente disponíveis segundo essa licença