IDENTIFYING POTENTIAL REGIONS FOR A PRECIPITATION INDEX INSURANCE PRODUCT IN PARANÁ – BRAZIL: A HIERARCHICAL CLUSTERING APPROACH
Palavras-chave:
Index-insurance. Hierarchical clustering. MICE.Resumo
In this article the availability and quality of public databases for soybean yields and daily rainfall in the state of Paraná in Brazil is assessed in order to verify the feasibility of an index insurance product. The multiple imputation by chained equations (MICE) method is utilized to fill missing values in the rainfall dataset and study the existence of spatial and temporal patterns in the data by means of hierarchical clustering. The results indicate that Paraná fulfills data requirements for a scalable weather index insurance with MICE and hierarchical clustering being effective tools in the pre-processing of precipitation data.Downloads
Referências
BABCOCK, Bruce A. The concentration of US agricultural subsidies. Iowa Ag Review, v. 7, n. 4, p. 4, 2015.
BARTLETT, Jonathan W. et al. Multiple imputation of covariates by fully conditional specification: accommodating the substantive model. Statistical methods in medical research, v. 24, n. 4, p. 462-487, 2015.Bondarenko, I.; Raghunathan, T. Graphical and numerical diagnostic tools to assess suitability of multiple imputations and imputation models. Statistics in medicine, 35 (17): 3007-3020, 2016.
BONDARENKO, Irina; RAGHUNATHAN, Trivellore. Graphical and numerical diagnostic tools to assess suitability of multiple imputations and imputation models. Statistics in medicine, v. 35, n. 17, p. 3007-3020, 2016.
CHARRAD, Malika et al. NbClust: an R package for determining the relevant number of clusters in a data set. Journal of statistical software, v. 61, n. 1, p. 1-36, 2014.
CHEVRET, S.; SEAMAN, Shaun; RESCHE-RIGON, M. Multiple imputation: a mature approach to dealing with missing data. Intensive care medicine, v. 41, n. 2, p. 348-350, 2015.
COLLIER, Benjamin; SKEES, Jerry; BARNETT, Barry. Weather index insurance and climate change: Opportunities and challenges in lower income countries. The Geneva Papers on Risk and Insurance-Issues and Practice, v. 34, n. 3, p. 401-424, 2009.
COLLIER, Benjamin; BARNETT, Barry; SKEES, Jerry R. State of Knowledge Report — Data Requirements for the Design of Weather Index Insurance. Bill & Melinda Gates Foundation, [s. l.], 2010. Disponível em: http://globalagrisk.com/Pubs/2010_GlobalAgRisk_State_of_Knowledge_Data_sept.pdf. Acesso em: 21 out. 2020.
DE CARVALHO, José Ruy Porto et al. Model for multiple imputation to estimate daily rainfall data and filling of faults. Revista Brasileira de Meteorologia, v. 32, p. 575-583, 2017.
DRABENSTOTT, Mark. Do farm payments promote rural economic growth?. Ag Decision Maker Newsletter, v. 9, n. 6, p. 2, 2015.
DUARTE, Gislaine V. et al. Modeling of soybean yield using symmetric, asymmetric and bimodal distributions: implications for crop insurance. Journal of Applied Statistics, v. 45, n. 11, p. 1920-1937, 2018.
EDWARDS, Chris. Agricultural subsidies. 2018.
FELEMA, João et al. Um estudo da produtividade do feijão, do milho e da soja na agricultura paranaense, nos anos de 2000 e 2010: uma análise espacial. Ensaios Fee, v. 36, n. 4, p. 817-842, 2016.
FRITZSONS, Elenice et al. Análise da pluviometria para definição de zonas homogêneas no Estado do Paraná. Raega-O Espaço Geográfico em Análise, v. 23, 2011.
GALLAGHER, Paul. US soybean yields: Estimation and forecasting with nonsymmetric disturbances. American Journal of Agricultural Economics, v. 69, n. 4, p. 796-803, 1987.
GRAHAM, John W.; SCHAFER, Joseph L. On the performance of multiple imputation for multivariate data with small sample size. Statistical strategies for small sample research, v. 50, p. 1-27, 1999.
HAJI-MAGHSOUDI, Saiedeh et al. Influence of pattern of missing data on performance of imputation methods: an example using national data on drug injection in prisons. International journal of health policy and management, v. 1, n. 1, p. 69, 2013.
HE, Yulei et al. Multiple imputation in a large-scale complex survey: a practical guide. Statistical methods in medical research, v. 19, n. 6, p. 653-670, 2010.
INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATISTICA (IBGE). IBGE Automatic Recovery System = Sistema IBGE de Recuperação Automática, 2019. Available in: https://sidra.ibge.gov.br/home/ipp/brasil. [Accessed: dec. 2019].
JENSEN, Nathaniel; BARRETT, Christopher. Agricultural index insurance for development. Applied Economic Perspectives and Policy, v. 39, n. 2, p. 199-219, 2017.
KELLER FILHO, Thadeu; ASSAD, Eduardo Delgado; LIMA, Paulo Roberto Schubnell de Rezende. Regiões pluviometricamente homogêneas no Brasil. Pesquisa Agropecuária Brasileira, v. 40, p. 311-322, 2005.
KENWARD, Michael G.; CARPENTER, James. Multiple imputation: current perspectives. Statistical methods in medical research, v. 16, n. 3, p. 199-218, 2007.
KIRWAN, Barrett E.; ROBERTS, Michael J. Who Really Benefits from Agricultural Subsidies? Evidence from Field‐level Data. American journal of agricultural economics, v. 98, n. 4, p. 1095-1113, 2016.
LEE, Katherine J.; CARLIN, John B. Recovery of information from multiple imputation: a simulation study. Emerging themes in epidemiology, v. 9, n. 1, p. 1-10, 2012.
LIMA, V.C.; LIMA, M.R.; MELO, V.F. Knowing the main soils of Paraná: approach for elementary and middle school teachers = Conhecendo os principais solos do Paraná: abordagem para professores do ensino fundamental e médio. Sociedade Brasileira de Ciência do Solo (Eds.). Núcleo Estadual Paraná, Brasil, 18, 2012.
LITTLE, Roderick JA. Missing-data adjustments in large surveys. Journal of Business & Economic Statistics, v. 6, n. 3, p. 287-296, 1988.
MARSHALL, Andrea; ALTMAN, Douglas G.; HOLDER, Roger L. Comparison of imputation methods for handling missing covariate data when fitting a Cox proportional hazards model: a resampling study. BMC medical research methodology, v. 10, n. 1, p. 1-10, 2010.
MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO – MAPA. Departamento De Gestão De Riscos. General Report 2017 - Rural Insurance Premium Grant Program (PSR) = Relatório Geral 2017 – Programa de Subvenção ao Prêmio do Seguro Rural (PSR), 2017. Available at: http://www.agricultura.gov.br/assuntos/riscos-seguro/seguro-rural/documentos-seguro-rural/RelatorioGeralPSR2017.pdf [Accessed Dec 22, 2019]. (in Portuguese).
MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO – MAPA. PLANO AGRÍCOLA E PECUÁRIO 2016/2017. MAPA Indicadores. Accessed December 07, 2019. http:// http://www.agricultura.gov.br/assuntos/sustentabilidade/plano-abc/arquivo-publicacoes-plano-abc/PAP1617.pdf.
MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO – MAPA. PLANO AGRÍCOLA E PECUÁRIO 2017/2018. MAPA Indicadores, 2018. Accessed December 07, 2019.
MINISTÉRIO DO DESENVOLVIMENTO REGIONAL (Brasil). Agência Nacional de Águas (ANA). Rede Hidrometeorológica Nacional. [S. l.], 2005. Disponível em: https://www.snirh.gov.br/hidroweb/apresentacao. Acesso em: 14 out. 2020.
MORRIS, Tim P.; WHITE, Ian R.; ROYSTON, Patrick. Tuning multiple imputation by predictive mean matching and local residual draws. BMC medical research methodology, v. 14, n. 1, p. 1-13, 2014.
OÑATE, Carlos Andrés; OZAKI, Vitor Augusto; BRAVO-URETA, Boris. Impact Evaluation of the Brazilian crop insurance public program “Proagro Mais”. 2016.
OZAKI, Vitor Augusto. Qual o custo governamental do seguro agrícola?. Revista de Economia e Sociologia Rural, v. 51, p. 123-136, 2013.
RAGHUNATHAN, Trivellore E. et al. A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey methodology, v. 27, n. 1, p. 85-96, 2001.
RAO, Kolli N. Weather index insurance: Is it the right model for providing insurance to crops?. ASCI Journal of Management, v. 41, n. 1, p. 86-101, 2011.
RUBIN, Donald B. An overview of multiple imputation. In: Proceedings of the survey research methods section of the American statistical association. Citeseer, 1988. p. 79-84.
RUBIN, Donald B. Multiple imputation for nonresponse in surveys. John Wiley & Sons, 2004.
SCHENKER, Nathaniel; TAYLOR, Jeremy MG. Partially parametric techniques for multiple imputation. Computational statistics & data analysis, v. 22, n. 4, p. 425-446, 1996.
VAN BUUREN, Stef; BOSHUIZEN, Hendriek C.; KNOOK, Dick L. Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in medicine, v. 18, n. 6, p. 681-694, 1999.
VAN BUUREN, Stef. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical methods in medical research, v. 16, n. 3, p. 219-242, 2007.
VAN BUUREN, Stef; GROOTHUIS-OUDSHOORN, Karin. mice: Multivariate imputation by chained equations in R. Journal of statistical software, v. 45, n. 1, p. 1-67, 2011.
WHITE, Ian R.; ROYSTON, Patrick; WOOD, Angela M. Multiple imputation using chained equations: issues and guidance for practice. Statistics in medicine, v. 30, n. 4, p. 377-399, 2011.
ZARCH, Mohammad Amin Asadi; SIVAKUMAR, Bellie; SHARMA, Ashish. Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI). Journal of hydrology, v. 526, p. 183-195, 2015.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
A aprovação dos artigos implica a aceitação imediata e sem ônus de que a Revista Brasileira de Climatologia terá exclusividade na primeira publicação do artigo. Os autores continuarão, não obstante, a deter os direitos autorais. Os autores autorizam também que seus artigos sejam disponibilizados em todos os indexadores aos quais a revista está vinculada.
Os autores mantém seus direitos de publicação sem restrições
A Comissão Editorial não se responsabiliza pelos conceitos ou afirmações expressos nos trabalhos publicados, que são de inteira responsabilidade dos autores.
A Revista Brasileira de Climatologia oferece acesso livre imediato ao seu conteúdo, seguindo o entendimento de que disponibilizar gratuitamente o conhecimento científico ao público proporciona maior democratização do conhecimento e tende a produzir maior impacto dos artigos publicados. Os artigos publicados na revista são disponibilizados segundo a Licença Creative Commons CC-BY-NC 4.0 (https://creativecommons.org/licenses/by-nc/4.0/). Segundo essa licença é permitido acessar, distribuir e reutilizar os artigos para fins não comerciais desde que citados os autores e a fonte. Ao submeter artigos à Revista Brasileira de Climatologia, os autores concordam em tornar seus textos legalmente disponíveis segundo essa licença