CICLONES EXTRATROPICAIS NO HEMISFÉRIO SUL: COMPARAÇÃO ENTRE DIFERENTES REANÁLISES

Autores

  • Vitor Hugo Marrafon
  • Michelle Simões Reboita
  • Rosmeri Porfírio da Rocha
  • Natália Machado Crespo

Resumo

Os ciclones extratropicais são sistemas responsáveis por mudanças no tempo e clima das regiões onde atuam. O conhecimento de suas características médias é obtido por meio de extensas bases de dados e códigos computacionais. Há vários estudos para o Hemisfério Norte (HN) que comparam a climatologia dos ciclones em diferentes reanálises. Como para o Hemisfério Sul (HS) há poucos estudos com esse enfoque, esse é o objetivo do presente trabalho. Aqui, os ciclones ao sul de 20oS são identificados no campo da pressão atmosférica ao nível médio do mar obtido de seis reanálises (NCEP1, NCEP2, NCEP20C, ERAI, ERA5 e ERA20C) e com um esquema automático. Dois períodos são analisados: um longo (1900-2010), que inclui as reanálises NCEP20C e a ERA20C, e um curto (1980-2018), que engloba as outras 4 reanálises. Com relação às reanálises centenárias, o NCEP20C mostra tendência positiva e estatisticamente significativa da frequência de ciclones, enquanto a ERA20C mostra tendência negativa desses sistemas no HS. Comparando as 6 reanálises, aquelas com maior resolução são as que resolvem o maior número de ciclones, mas isso não afeta as características climatológicas dos ciclones, como o ciclo anual da frequência que é similar em todos os conjuntos. A frequência de ciclones intensos (que atingem pressão central menor do que 980 hPa) mostra aumento em todas as reanálises, variando de 6 sistemas por década na ERA5 a 16 no NCEP1. Um resultado interessante nas reanálises centenárias é que a tendência de todos os ciclones no HS diminui em latitudes médias e aumenta ao redor da Antártica, sinal indicativo de mudanças climáticas.

Downloads

Não há dados estatísticos.

Referências

ALLEN, J. T.; PEZZA, A. B.; BLACK, M. T. Explosive cyclogenesis: A global climatology comparing multiple reanalyses. Journal of Climate, 23(24): 6468-6484, 2010.

BEFORT, D. J.; WILD, S.; KRUSCHKE, T.; ULBRICH, U.; LECKEBUSCH, G. C. Different long‐term trends of extra‐tropical cyclones and windstorms in ERA‐20C and NOAA‐20CR reanalyses. Atmospheric Science Letters, 17(11): 586-595, 2016.

BERRISFORD, P.; DEE, D.; POLI, P.; et al. The ERA-Interim archive, version 2.0. ERA Report Series, 2011. Available in https://www.ecmwf.int/en/elibrary/8174-era-interim-archive-version-20

BLOOMFIELD, H. C.; SHAFFREY, L. C.; HODGES, K. I.; VIDALE, P. L. A critical assessment of the long term changes in the wintertime surface Arctic Oscillation and Northern Hemisphere storminess in the ERA20C reanalysis. Environmental Research Letters, 13(9): p. 94004., 2018. doi: https://doi.org/10.1088/1748-9326/aad5c5

CELEMÍN, A. H. Meteorologia Prática. Edicióndel Autor, Mar del Plata, República Argentina, 313 pp, 1984.

CHANG, E. K.; YAU, A. M. Northern Hemisphere winter storm track trends since 1959 derived from multiple reanalysis datasets. Climate Dynamics, 47(5-6): 1435-1454, 2016.

COMPO, G. P.; WHITAKER, J. S.; SARDESHMUKH, P. D.; et al. The twentieth century reanalysis project. Quarterly Journal of the Royal Meteorological Society, 137(654): 1-28, 2011.

COPERNICUS CLIMATE CHANGE SERVICE (C3S). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, 2017.

CRESPO, N. M. A potential vorticity perspective on cyclones over South America. Tese de Doutorado em Meteorologia, IAG/USP, 104p., 2019. DOI:10.11606/T.14.2019.tde-17122019-154313.

CRESPO, N. M.; DA ROCHA, R. P.; DE JESUS, E. M. Cyclone density and characteristics in different reanalyses dataset over South America. EGU General Assembly, 2020a, https://doi.org/10.5194/egusphere-egu2020-11316.

CRESPO, N. M.; DA ROCHA, R. P.; SPRENGER, M.; WERNLI, H. A potential vorticity perspective on cyclogenesis over centre-eastern South America. International Journal of Climatology, 1–16, 2020b. https://doi.org/10.1002/joc.6644.

DE JESUS, E.; DA ROCHA, R. P.; CRESPO, N. M.; REBOITA, M. S.; GOZZO, L. F. Multi-model climate projections of the main cyclogenesis hot-spots and associated winds in South America eastern coast. Climate Dynamics, 2020. https://doi.org/10.1007/s00382-020-05490-1

ENFIELD, D. B.; MESTAS-NUÑEZ, A. M.; TRIMBLE, P. J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophysical Research Letters, 28(10): 2077-2080, 2001.

GAN, M. A.; RAO, V. B. Surface cyclogenesis over South America. Monthly Weather Review, 119(5): 1293-1302, 1991.

GRIEGER, J.; LECKEBUSCH, G. C.; RAIBLE, C. C.; RUDEVA, I.; SIMMONDS, I. Subantarctic cyclones identified by 14 tracking methods, and their role for moisture transports into the continent. Tellus A: Dynamic Meteorology and Oceanography, 70(1): 1-18, 2018.

HERSBACH, H., BELL, B.; BERRISFORD, P.; HORÁNYI, A.; MUÑOZ-SABATER, J.; NICOLAS, J. P.; RADU, R.; SCHEPERS, D.; SIMMONS, A.; SOCI, C.; DEE, D. ECMWF Global Reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, 159: 17-24, 2019.

HODGES, K. I. Confidence intervals and significance tests for spherical data derived from feature tracking. Monthly Weather Review, 136(5): 1758-1777, 2008.

HODGES, K. I.; LEE, R. W.; BENGTSSON, L. A comparison of extratropical cyclones in recent reanalysis ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. Journal of Climate, 24(18): 4888-4906, 2011.

HODGES, K.; COBB, A.; VIDALE, P. L. How well are tropical cyclones represented in reanalysis datasets?.Journal of Climate, 30: 5243-5264, 2017.

HOSKINS, B. J.; HODGES, K. I. A new perspective on Southern Hemisphere storm tracks. Journal of Climate, 18(20): 4108-4129, 2005.

KALNAY, E.; KANAMITSU, M.; KISTLER, R.; et al. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3): 437-472, 1996.

KANAMITSU, M.; EBISUZAKI, W.; WOOLLEN, J.; YANG, S.-K.; HNILO, J. J.; FIORINO, M.; POTTER., G. L. NCEP/DOE AMIP-II reanalysis (R-2), Bull. Am. Meteorol. Soc., 83: 1631 – 1643, 2002.

KAYANO, M. T.; ROSA, M. B.; RAO, V. B.; ANDREOLI, R. V.; SOUZA, R. A. F. Relations of the Low-Level Extratropical Cyclones in the Southeast Pacific and South Atlantic to the Atlantic Multidecadal Oscillation. Journal of Climate, 32: 4167-4178, 2019.

KENDALL, M. G. A new measure of rank correlation. Biometrika, 30(1/2): 81-93, 1938.

KODAMA, C.; STEVENS, B.; MAURITSEN, T.; SEIKI, T.; SATOH, M. A New Perspective for Future Precipitation Change from Intense Extratropical Cyclones. Geophysical Research Letters, 46(21): 12435-12444, 2019.

KUNKEL, K. E.; EASTERLING, D. R.; KRISTOVICH, D. A.; GLEASON, B.; STOECKER, L.; SMITH, R. Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. Journal of Hydrometeorology, 13(3): 1131-1141, 2012.

KRUSCHKE, T.; RUST, H. W.; KADOW, C.; LECKEBUSCH, G. C.; ULBRICH, U. Evaluating decadal predictions of northern hemispheric cyclone frequencies. Tellus A: Dynamic Meteorology and Oceanography, 66(1): p.22830, 2014.

LECKEBUSCH, G. C.; ULBRICH, U. On the relationship between cyclones and extreme windstorm events over Europe under climate change. Global and Planetary Change, 44(1-4): 181-193, 2004.

LECKEBUSCH, G. C.; KOFFI, B.; ULBRICH, U.; PINTO, J. G.; SPANGEHL, T.; ZACHARIAS, S. Analysis of frequency and intensity of European winter storm events from a multi-model perspective, at synoptic and regional scales. Climate Research, 31(1): 59-74, 2006.

LEONARD, S. R.; TURNER, J.; VAN DER WAL, A. An assessment of three automatic depression tracking schemes. Meteorological Applications, 6(2): 173-183, 1999.

LIM, E. P.; SIMMONDS, I. Southern Hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979–2001. Journal of Climate, 20(11): 2675-2690, 2007.

MANTUA, N. J.; HARE, S. R.; ZHANG, Y.; WALLACE, J. M.; FRANCIS, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78(6): 1069-1080, 1997.

MURRAY, R. J.; SIMMONDS, I. A numerical scheme for tracking cyclone centres from digital data. Part I: Development and operation of the scheme. Australian Meteorological Magazine, 39(3): 155-166, 1991a.

MURRAY, R. J.; SIMMONDS, I. A numerical scheme for tracking cyclone centres from digital data. Part II: application to January and July general circulation model simulations. Australian Meteorological Magazine, 39(3): 167-180, 1991b.

NEU, U.; AKPEROV, M.; BELLENBAUM, N., et al. MILAST: A Community Effort to Intercompare Extratropical Cyclone Detection and Tracking Algorithms. Bulletin of the American Meteorological Society, 94 (4): 529-547, 2013.

PEZZA, A. B.; AMBRIZZI, T. Variability of Southern Hemisphere cyclone and anticyclone behavior: Further analysis. Journal of Climate, 16(7): 1075-1083, 2003.

PEZZA, A. B.; RASHID, H. A.; SIMMONDS, I. Climate links and recent extremes in Antarctic sea ice, high-latitude cyclones, Southern Annular Mode and ENSO. Climate Dynamics, 38(1-2): 57-73, 2012.

PINTO, J. G.; SPANGEHL, T.; ULBRICH, U.; SPETH, P. Sensitivities of a cyclone detection and tracking algorithm: individual tracks and climatology. Meteorologische Zeitschrift, 14(6): 823-838, 2005.

POLI, P.; HERSBACH, H.; DEE, D. P.; et al.. ERA-20C: An atmospheric reanalysis of the twentieth century. Journal of Climate, 29(11): 4083-4097, 2016.

REBOITA, M. S. Ciclones extratropicais sobre o Atlântico Sul: Simulação climática e experimentos de sensibilidade (Tese de doutorado), Universidade de São Paulo (IAG/USP), 2008.

REBOITA, M. S.; DA ROCHA, R. P.; AMBRIZZI, T.; SUGAHARA, S. (2010). South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Climate Dynamics, 35(7-8): 1331-1347, 2010.

REBOITA, M. S.; DA ROCHA, R. P.; AMBRIZZI, T. Dynamic and Climatological Features of Cyclonic Developments over Southwestern South Atlantic Ocean, In: Veress, B.; Szigethy, J. (Org.). Horizonts in Earth Science Research, 6: 135-160, 2012.

REBOITA, M. S.; DA ROCHA, R. P.; AMBRIZZI, T.; GOUVEIA, C. D. Trend and teleconnection patterns in the climatology of extratropical cyclones over the Southern Hemisphere. Climate Dynamics, 45(7-8): 1929-1944, 2015.

REBOITA, M. S.; GAN, M. A.; DA ROCHA, R. P.; CUSTÓDIO, I. S. Ciclones em Superfície nas Latitudes Austrais: Parte I-Revisão Bibliográfica. Revista Brasileira de Meteorologia, 32(2): 171-186, 2017.

REBOITA, M. S.; DA ROCHA, R. P.; DE SOUZA, M. R.; LLOPART, M. Extratropical cyclones over thesouthwestern South AtlanticOcean: HadGEM2‐ES and RegCM4 projections. International Journal of Climatology, 38(6): 2866-2879, 2018.

REBOITA, M. S.; REALE, M.; DA ROCHA, R. P.; GIORGI, F.; GIULIANI, G.; COPPOLA, E.; NINO, R. B. L.; LLOPART, M., TORRES, J. A.; CAVAZOS, T. Future Changes in the Wintertime Cyclonic Activity over the CORDEX-CORE Southern Hemisphere domains in a Multi-Model Approach. Climate Dynamics, doi: 10.1007/s00382-020-05317-z, 2020.

SIMMONDS, I.; BI, D.; HOPE, P. Atmospheric water vapor flux and its association with rainfall over china in summer. Journal of Climate, 12(5): 1353-1367, 1999.

SIMMONDS, I. R.J.; MURRAY, R.M. A refinement of cyclone tracking methods with data from FROST. Australian Meteorological Magazine 28: 617-622, 1999.

SIMMONDS, I.; KEAY, K. Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP–NCAR reanalysis. Journal of Climate, 13(5): 873-885, 2000.

SIMMONDS, I.; KEAY, K.; LIM, E. P. Synoptic activity in the seas around Antarctica. Monthly Weather Review, 131(2): 272-288, 2003.

SINCLAIR, M. R. An objective cyclone climatology for the Southern Hemisphere. Monthly Weather Review, 122(10): 2239-2256, 1994.

TILININA, N.; GULEV, S. K.; RUDEVA, I.; KOLTERMANN, P. Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses. Journal of Climate, 26(17): 6419-6438, 2013.

TILININA, N.; GULEV, S. K.; BROMWICH, D. H. New view of Arctic cyclone activity from the Arctic system reanalysis. Geophysical Research Letters, 41(5): 1766-1772, 2014.

VERA, C. S.; VIGLIAROLO, P. K.; BERBERY, E. H. Cold Season Synoptic-Scale Waves over Subtropical South America. Monthly Weather Review, 130: 684-699, 2002.

VESSEY, A. F.; HODGES, K. I; SHAFFREY, L. C. et al. An inter-comparison of Arctic synoptic scale storms between four global reanalysis datasets. Climate Dynamics, 54: 2777–2795, 2020.

WANG, X. L.; FENG, Y.; COMPO, G. P.; SWAIL, V. R.; ZWIERS, F. W.; ALLAN, R. J.; SARDESHMUKH, P. D. Trends and low frequency variability of extra-tropical cyclone activity in the ensemble of twentieth century reanalysis. Climate Dynamics, 40(11-12): 2775-2800, 2013.

WANG, X. L.; FENG, Y.; CHAN, R.; ISAAC, V. Inter-comparison of extra-tropical cyclone activity in nine reanalysis datasets. Atmospheric Research,181: 133-153, 2016.

WICKSTRÖM, S.; JONASSEN, M. O.; VIHMA, T.; UOTILA, P. Trends in cyclones in the high‐latitude North Atlantic during 1979–2016. Quarterly Journal of the Royal Meteorological Society, 2019.

ZAHN, M.; AKPEROV, M.; RINKE, A.; FESER, F.; MOKHOV, I. I. Trends of cyclone characteristics in the Arctic and their patterns from different reanalysis data. JournalofGeophysicalResearch: Atmospheres, 123(5): 2737-2751, 2018

Downloads

Publicado

06-04-2021

Como Citar

Marrafon, V. H., Reboita, M. S., da Rocha, R. P., & Crespo, N. M. (2021). CICLONES EXTRATROPICAIS NO HEMISFÉRIO SUL: COMPARAÇÃO ENTRE DIFERENTES REANÁLISES. Revista Brasileira De Climatologia, 28, 48–73. Recuperado de https://ojs.ufgd.edu.br/rbclima/article/view/14339

Edição

Seção

Artigos