





# LONG-TERM INTENSE RAIN EQUATION FOR SANTA CATARINA, BRAZIL

# Equação de chuvas intensas de longa duração para Santa Catarina, Brasil

# Ecuación de lluvias intensas de largo plazo para Santa Catarina, Brasil

#### Álvaro José Back ២ 💱

Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (Epagri)/Estação Experimental de Urussanga

email: ajb@epagri.sc.gov.br

#### Luísa Back 厄 💱

Programa de Pós Graduação em Epidemiologia/Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre, Rio Grande do Sul, Brasil luisasmback@gmail.com

#### Beatriz Back 🛈 💱

Instituto de Matemática e Estatística/ Universidade Federal do Rio Grande do Sul Porto Alegre, Rio Grande do Sul, Brasil beatrizsmback@gmail.com

**Gabriel da Silva Souza** (D) Programa de Pós-graduação em Ciências Ambientais/Universidade do Extremo Sul Catarinense (Unesc)

eng.agrimensorgabriel@gmail.com

**Abstract:** Reliable estimates of extreme long-term rainfall are important for understanding the risks of natural disasters such as floods and landslides. In Brazil, there are few studies on the risk of extreme long-term rainfall events. The available IDF equations only allow estimating heavy rainfall lasting less than 24 hours. This study aimed to adjust the Intensity-Duration-Frequency (IDF) equation for rainfall lasting ten days for the state of Santa Catarina. 176 rainfall stations with data series over 30 years were used. Maximum rainfall lasting from one to ten days and return periods of 2, 5, 10, 20, 25, 50, and 100 years were estimated. The coefficients of the heavy rainfall equation were adjusted. The performance indices confirmed the good fit of the equations, with R<sup>2</sup> greater than 0.969 and Nash-Sutcliffe coefficient greater than 0.928. The K coefficient showed greater variation between the coefficients of the heavy rainfall equation given with higher values on the north coast of the state. The intense rains show spatial variation,

with higher values observed in the regions of the North Coast and Far West of the state and lower values in the Middle Valley of Itajaí region. The IDF equations make it possible to obtain estimates for rainfall lasting from one to ten days and a return period from 2 to 100 years and can be used to estimate the risks of extreme events for the State of Santa Catarina.

Keywords: Extreme event. Natural disasters. Inundation. Drainage.

**Resumo:** Estimativas confiáveis de chuvas extremas de longa duração são importantes para o conhecimento dos riscos desastres naturais como inundações e deslizamentos. No Brasil existem poucos estudos sobre riscos de eventos extremos de chuvas de longa duração. As equações IDF disponíveis somente permitem estimar chuvas intensas com duração inferior a 24h. Este estudo teve como objetivo ajustar as equação Intensidade-Duração-Frequência (IDF) para chuvas com duração de uma dez dias para o estado de Santa Catarina. Foram utilizadas 176 estações pluviométricas com séries de dados superior a 30 anos. Foram estimadas as chuvas máximas com duração de um a dez dias e períodos de retorno de 2, 5, 10, 20, 25, 50 e 100 anos. Foram ajustados os coeficientes da equação de chuvas intensas. Os índices de desempenho confirmaram o bom ajuste das equações, com R<sup>2</sup> superior a 0,969 e Coeficiente de Nash-Sutcliffe superior a 0,928. O coeficiente K mostrou maior variação entre os coeficientes da equação de chuvas intensas apresentam variação espacial, com maiores valores no litoral norte do estado. As chuvas intensas apresentam variação espacial, com maiores valores observados nas regiões do Litoral Norte e Extremo Oeste do estado e menores valores na região do Médio Vale do Itajaí. As equações IDF permitem obter as estimativas para chuvas com duração de um a dez dias e período de retorno de 2 a 100 anos, podendo ser usadas na estimativa dos riscos de eventos extremos para o Estado de Santa Catarina.

Palavras-chave: Evento extremo. Desastres naturais. Inundação. Drenagem.

Resumen: Las estimaciones confiables de precipitaciones extremas a largo plazo son importantes para comprender los riesgos de desastres naturales como inundaciones y derrumbes de tierra. En Brasil, existen pocos estudios sobre el riesgo de eventos extremos de lluvia a largo plazo. Las ecuaciones IDF disponibles solo permiten estimar lluvias intensas con duración inferior a 24 horas. Este estudio tuvo como objetivo ajustar la ecuación Intensidad-Duración-Frecuencia (IDF) para lluvias con duración de diez días para el estado de Santa Catarina. Se utilizaron 176 estaciones pluviométricas con series de datos superiores a 30 años. Se estimaron precipitaciones máximas con duración entre uno y diez días y períodos de retorno de 2, 5, 10, 20, 25, 50 y 100 años. Se ajustaron los coeficientes de la ecuación de lluvias intensas. Los índices de desempeño confirmaron el buen ajuste de esas ecuaciones, con R<sup>2</sup> superior a 0,969 y coeficiente de Nash-Sutcliffe superior a 0,928. El coeficiente K presentó variación más grande entre los coeficientes de la ecuación de lluvias fuertes con valores más altos en la costa norte del estado. Las lluvias intensas muestran variación espacial, con valores más altos observados en las regiones de la Costa Norte y Extremo Oeste del estado y valores más bajos en la región del Valle Medio del Itajaí. Las ecuaciones IDF permiten obtener estimaciones para lluvias con duración entre uno y diez días y un período de retorno de 2 a 100 años, cuales pueden ser utilizadas para estimar los riesgos de eventos extremos para el estado de Santa Catarina.

Palabras clave: Evento extremo. Desastres naturales. Inundación Drenaje.

Submetido em: 09/05/2023 Aceito para publicação em: 26/07/2023 Publicado em: 30/07/2023



#### **1. INTRODUCTION**

Knowing the value of intense rainfall is fundamental for estimating the maximum flows to be used in the design of engineering infrastructure projects and hydraulic works such as bridges, culverts, dam spillways (MAMOON et al., 2014; PENNER; LIMA, 2016).

Mouri et al. (2013) highlight the need for studies of extreme events to assess the risk of natural disasters. Realistic and reliable estimates of rainfall and extreme runoff are important for the preservation of human life and property and are necessary for the proper assessment of the risks and economic impacts of eventual failures where the costs associated with repairs can be significant (GREEN et al., 2015; JOHNSON; SMITHERS, 2019).

The dimensioning of hydraulic works is based on a specific amount of rainfall, which varies according to the type of work, the costs involved and the risks of failure, called project rainfall (BALBASTRE-SOLDEVILA et al., 2019; COOK et al., 2020). The project rainfall should consider the relationship between intensity, duration and frequency, called IDF relationships (MIRHOSSEINI et al., 2012; SUN et al., 2019). Some authors use the height or depth ratio instead of intensity, calling it the DDF ratio (YAMOAT et al., 2022). These relationships can be expressed graphically, the so-called IDF curves, or through equations, called IDF (or DDF) equations.

The IDF curve was presented by Sherman (1931) and Bernard (1932) and has since been widely used around the world (BEZAK et al., 2018). The IDF relations were initially established for short-term rainfall (less than 24 h), obtained from the analysis of pluviographic data. In recent decades, IDF equations have been established using techniques to disaggregate daily rainfall and from shorter duration rainfall (BACK; CADORIN, 2021).

In urban drainage, which generally involves studies in small basins or contribution areas, the project rainfall is of short duration, often less than two hours in duration. For projects involving large basins, or in agricultural drainage studies, it is often necessary to consider the frequency of long-term rainfall (NAMITHA; VINOTHKUMAR, 2019). In agricultural drainage, it is also common to use rain lasting up to seven days (BELTRAN, 1987). Similarly, landslide risk studies may require data on rainfall accumulated over several days. Vieira et al. (2005), in their analysis to identify areas susceptible to landslides in Bairro da Velha Grande, in the municipality of Blumenau, found a correlation between the



accumulated precipitation in the previous four days and the precipitation on the day of the landslide event. According to Dias and Herrmann (2002), there is a greater probability of occurrence of mass movements when a heavy downpour is preceded by consecutive days of rain. Valverde et al. (2018) considered that the maximum accumulated rainfall in 5 days is a good indicator for the occurrence of landslides, noting that, when persistent rains occur for several days, the most vulnerable areas, considered at geological/geotectonic risk, suffer the greatest impacts.

Rain can be considered as the main triggering factor of landslides, mainly in places of relative tectonic stability. Stabile and Colângelo (2017) showed that the main mass movement events in Brazil were related to extreme rainfall with duration ranging from 6 to 96 hours. XUE et al (2016) evaluated the effect of long-term rainfall on soil stability and showed that soil stability reduced for rainfall lasting longer than 4 days. Ng and Shi (1997), investigating the influence of rain on soil stability, concluded that the factor of safety decreases as the duration of rain increases until the critical duration is reached. The authors concluded that the critical duration ranges from 3 to 7 days. Soares and Ramos Filho (2014), observed that a threshold close to 50 mm of accumulated rain for 7 days was a good reference to indicate the possibility of landslides in João Pessoa (PB)

The long-term heavy rainfall equation can be used in mathematical modeling for extreme events and hydrological simulation of events in large basins. Froelich (1995) developed IDF equations for durations from one to ten days. Green et al. (2016) presented project rainfall estimates for return periods ranging from 1 to 100 years and durations ranging from 1 minute to 7 days. Smithers and Schulze (2000) used daily rainfall data from 1,806 Australian rainfall stations, all with at least 40 years of record, to determine maximum rainfall for longer durations (1 to 7 days).

In Brazil, there are few studies of heavy rainfall lasting more than 1 day, and mainly of IDF equations to be applied in estimating rainfall lasting more than 24 h. Back (2022) carried out a study of intense rainfall for the state of Santa Catarina, presenting the maximum rainfall lasting from one to ten days for 224 rainfall stations, where she used the Gumbel and GEV probability distributions for the maximum series of each duration. This study aims to adjust the IDF equation to obtain an estimate of intense rainfall lasting from one to ten days for the State of Santa Catarina from one to ten days for the State of Santa Catarina from one to ten days for the State of Santa Catarina.



## **2. METHODOLOGY**

### 2.1. Methodological procedures

From the study by Back (2022), the pluviometric stations with a data series of more than 30 years were selected. Table 1 contains the list of stations and the period of data used, and Figure 1 shows the spatial distribution of stations.

For each station, the height of maximum rainfall lasting from 24 to 240 hours (one to ten days) and a return period of 2, 5, 10, 25, 50 and 100 years were estimated from the HidroChuSC2.0 program (BACK, 2022). The rainfall estimate is performed with the Gumbel and GEV probability distributions, according to the selection criteria adopted for each duration described in Back and Bonfante (2021) and Back (2022).

Rainfall heights were converted into intensities, and thus, the equation was adjusted to estimate rainfall intensity as follows:

(1) 
$$i = \frac{KT^m}{(t+b)^n}$$

Where i: rainfall intensity (mm  $h^{-1}$ ); T = return period (years); t = duration of rain (hours); K, m, b, n coefficients to be adjusted. The adjustment of the parameters was performed by minimizing the expression:

(2) 
$$S = \sum_{t=1}^{10} \sum_{T=1}^{8} \left( \frac{(Ie_{t,T} - Io_{t,T})}{Io_{t,T}} \right)^2$$

Where  $Ie_{t,T}$  is the rainfall intensity with duration t and return period T estimated by the IDF equation;  $Io_{t,T}$  is the rainfall intensity with duration t and return period T obtained from HidroChuSC2.0.





Figure 1 – Spatial distribution of rainfall stations with more than 30 years of data in the state of Santa Catarina.

To assess the accuracy of the estimate, the standard error of estimate (EP), Nash-Sutcliffe Coefficient (NS), concordance index (d), mean percentage error (PBIAS), mean absolute error (MAE) and coefficient of determination (R<sup>2</sup>) were calculated, respectively, by equations 3 to 8.

(3) 
$$EP = \sqrt{\frac{\sum_{i=1}^{n} (Ei - O_i)^2}{N}}$$

(4) 
$$NS = 1 - \frac{\sum_{i=1}^{N} (Ei - Oi)^2}{\sum_{i=1}^{N} (Ei - O)^2}$$

(5) 
$$d = 1 - \frac{\sum_{i=1}^{n} (Ei - Oi)^2}{\sum_{l=1}^{N} (|Ei - O| + |Oi - O|)^2}$$

(6) 
$$PBIAS(\%) = \sum_{i=1}^{n} \frac{(oi-Ei)}{\sum oi} 100$$

(7) 
$$MAE = \frac{\sum_{i=1}^{N} |Oi-Ei|}{N}$$

(8) 
$$R^{2} = \frac{\sum_{i=1}^{n} (Ei-O)^{2}}{\sum_{i=1}^{n} (Ei-O)^{2} \sum_{i=1}^{n} (Ei-E)^{2}}$$



Where: EP = standard error of estimation, Ei = intensity value estimated by the equation, Oi = intensity value from Table 1, N = number of values (N = 80); NS = Nash-Sutcliffe Coefficient; d = concordance index; O = mean value from Table 1; PBIAS = mean percentage error; MAE = mean absolute error;  $R^2$  = coefficient of determination; E = average value of the estimates by the equation.

### Table 1 - Rainfall stations used and maximum series data period.

| Station   | Code    | Municipality             | Start | End  | N, years | Entity | Station    | Code                | Municipality              | Start | End  | N, years | Entity |
|-----------|---------|--------------------------|-------|------|----------|--------|------------|---------------------|---------------------------|-------|------|----------|--------|
| 1         | 2652000 | Abelardo Luz             | 1958  | 2019 | 61       | ANA    | 92         | 2850004             | Lages                     | 1959  | 2019 | 60       | ANA    |
| 2         | 2749041 | Agrolândia               | 1983  | 2019 | 36       | ANA    | 93         | 230                 | Lages                     | 1961  | 2015 | 43       | Epagri |
| 3         | 2749007 | Alfredo Wagner           | 1941  | 2019 | 78       | ANA    | 94         | 2650019             | Lebon Regis               | 1977  | 2019 | 42       | ANA    |
| 4         | 2749014 | Alfredo Wagner           | 1941  | 1975 | 34       | ANA    | 95         | 2749034             | Leoberto Leal             | 1977  | 2019 | 42       | ANA    |
| 5         | 2749037 | Alfredo Wagner           | 1977  | 2019 | 42       | ANA    | 96         | 2648002             | Luiz Alves                | 1941  | 2019 | 78       | ANA    |
| 6         | 2748003 | Angelina                 | 1946  | 2019 | 73       | ANA    | 97         | 2651036             | Macieira                  | 1977  | 2019 | 42       | ANA    |
| 7         | 2749019 | Angelina                 | 1955  | 1989 | 34       | ANA    | 98         | 2649016             | Mafra                     | 1951  | 2009 | 58       | ANA    |
| 8         | 2751001 | Anita Garibaldi          | 1965  | 2019 | 54       | ANA    | 99         | 2748001             | Major Gercino             | 1946  | 2019 | 73       | ANA    |
| 9         | 2749012 | Anitápolis               | 1946  | 2019 | 73       | ANA    | 100        | 2749015             | Major Gercino             | 1956  | 2019 | 63       | ANA    |
| 10        | 2749027 | Anitápolis               | 1973  | 2019 | 46       | ANA    | 101        | 2650000             | Major Vieira              | 1952  | 2015 | 63       | ANA    |
| 11        | 2748016 | Antônio Carlos           | 1977  | 2019 | 42       | ANA    | 102        | 2651011             | Matos Costa               | 1940  | 1995 | 55       | ANA    |
| 12        | 2749000 | Apiùna                   | 1941  | 2019 | 78       | ANA    | 103        | 2651044             | Matos Costa               | 1980  | 2014 | 34       | ANA    |
| 13        | 2749016 | Apiùna                   | 1957  | 2019 | 62       | ANA    | 104        | 2849005             | Meleiro                   | 1943  | 2019 | 76       | ANA    |
| 14        | 2749025 | Apiuna                   | 1951  | 1989 | 38       | ANA    | 105        | 2849024             | Meleiro                   | 1978  | 2019 | 41       |        |
| 15        | 2648020 | Araquari                 | 1976  | 2019 | 43       |        | 106        | 2653003             | Modelo                    | 1972  | 2019 | 47       |        |
| 16        | 2648028 | Araquari                 | 1978  | 2019 | 41       |        | 107        | 2650015             | Monte Castelo             | 1977  | 2015 | 38       |        |
| 17        | 2849004 | Ararangua                | 1946  | 2010 | 04<br>72 |        | 108        | 2748002             |                           | 1946  | 2019 | 73       |        |
| 18        | 2646000 | Annazem<br>Bonadita Nova | 1940  | 2019 | 75<br>70 |        | 109        | 2649001             | Dainal                    | 1940  | 2019 | 79<br>60 |        |
| 19        | 2649003 | Benedito Novo            | 1941  | 2019 | 70<br>65 |        | 110        | 2730007             | Palhoca                   | 1939  | 2019 | 72       |        |
| 20        | 2649017 | Blumenau                 | 1954  | 2019 | 78       |        | 111        | 2652012             | Palma Sola                | 1940  | 2019 | /3       |        |
| 21        | 2649010 | Blumenau                 | 1941  | 2019 | 78       |        | 112        | 2053013             | Palmitos                  | 1960  | 2019 | 42<br>50 |        |
| 22        | 2649009 | Blumenau                 | 1941  | 1020 | /6       |        | 115        | 2755000             | Pananduva                 | 1900  | 2019 | 34       |        |
| 23        | 2649007 | Blumenau                 | 1944  | 2019 | 4J<br>74 |        | 114        | 2651022             | Passos Maia               | 1973  | 2019 | 46       |        |
| 24        | 2749035 | Bocaina do Sul           | 1977  | 2015 | 42       |        | 115        | 2031022             | Paulo Lones               | 1977  | 2019 | 40       |        |
| 25        | 2849009 | Bom Jardim da Serra      | 1970  | 2019 | 42       |        | 110        | 2849028             | Pedras Grandes            | 1987  | 2019 | 32       |        |
| 20        | 2849023 | Bom Jardim da Serra      | 1977  | 2019 | 42       | ANA    | 117        | 2648019             | Picarras                  | 1976  | 2019 | 43       | ANA    |
| 28        | 2749045 | Botuverá                 | 1987  | 2019 | 32       | ANA    | 110        | 2751010             | Piratuba                  | 1938  | 1977 | 39       | ANA    |
| 20        | 2849030 | Braco do Norte           | 1987  | 2019 | 32       | ANA    | 110        | 2649002             | Pomerode                  | 1930  | 2019 | 89       | ANA    |
| 30        | 2748000 | Brusque                  | 1941  | 2019 | 78       | ANA    | 120        | 2750011             | Ponte Alta                | 1958  | 2019 | 61       | ANA    |
| 31        | 2651002 | Cacador                  | 1944  | 1975 | 31       | ANA    | 121        | 2750010             | Ponte Alta do Norte       | 1960  | 2019 | 59       | ANA    |
| 32        | 60      | Cacador                  | 1961  | 2019 | 51       | Epagri | 122        | 2651040             | Ponte Serrada             | 1977  | 2019 | 42       | ANA    |
| 33        | 2649057 | Campo Alegre             | 1977  | 2017 | 40       | ANA    | 123        | 2650008             | Porto União               | 1975  | 2012 | 37       | ANA    |
| 34        | 2750001 | Campo Belo do Sul        | 1970  | 2019 | 49       | ANA    | 124        | 2749006             | Pouso Redondo             | 1941  | 2019 | 78       | ANA    |
| 35        | 2653001 | Campo Erê                | 1970  | 2019 | 49       | ANA    | 126        | 2949001             | Praia Grande              | 1977  | 2019 | 42       | ANA    |
| 36        | 2751002 | Campos Novos             | 1923  | 1998 | 75       | ANA    | 127        | 2950056             | Praia Grande              | 1983  | 2019 | 36       | ANA    |
| 37        | 94      | Campos Novos             | 1969  | 2019 | 50       | Epagri | 128        | 2749023             | Presidente Getúlio        | 1944  | 1989 | 45       | ANA    |
| 38        | 2650003 | Canoinhas                | 1940  | 1995 | 55       | ANA    | 129        | 2749020             | Rancho Queimado           | 1977  | 2019 | 42       | ANA    |
| 39        | 2650018 | Canoinhas                | 1977  | 2014 | 37       | ANA    | 130        | 2749024             | Rio do Sul                | 1944  | 1989 | 45       | ANA    |
| 40        | 2751003 | Capinzal                 | 1940  | 1977 | 37       | ANA    | 131        | 2749039             | Rio do Sul                | 1979  | 2019 | 40       | ANA    |
| 41        | 2751012 | Capinzal                 | 1977  | 2019 | 42       | ANA    | 132        | 2649008             | Rio dos Cedros            | 1941  | 2019 | 78       | ANA    |
| 42        | 2752016 | Chapecó                  | 1975  | 2014 | 39       | ANA    | 133        | 2649030             | Rio dos Cedros            | 1951  | 1993 | 42       | ANA    |
| 43        | 108     | Chapecó                  | 1974  | 2019 | 46       | Epagri | 134        | 2649031             | Rio dos Cedros            | 1958  | 1993 | 35       | ANA    |
| 44        | 2752005 | Concordia                | 1956  | 2019 | 63       | ANA    | 135        | 2649032             | Rio dos Cedros            | 1945  | 1993 | 48       | ANA    |
| 45        | 2652034 | Coronel Freitas          | 1979  | 2019 | 40       | ANA    | 136        | 2649055             | Rio Negrinho              | 1977  | 2014 | 37       | ANA    |
| 46        | 2649013 | Corupá                   | 1946  | 2019 | 73       | ANA    | 137        | 2653004             | Romelandia                | 1970  | 2006 | 36       | ANA    |
| 47        | 2649064 | Corupá                   | 1985  | 2019 | 34       | ANA    | 138        | 2651052             | Salto Veloso              | 1988  | 2019 | 31       | ANA    |
| 48        | 2750002 | Curitibanos              | 1912  | 1957 | 45       | ANA    | 139        | 2650016             | Santa Cecília             | 1978  | 2015 | 37       | ANA    |
| 49        | 2750009 | Curitibanos              | 1959  | 2019 | 60       | ANA    | 140        | 2849031             | Santa Rosa de Lima        | 1987  | 2019 | 32       |        |
| 50        | 2750012 | Curitibanos              | 1962  | 2019 | 57       | ANA    | 141        | 2748005             | Santo Amaro da Imperatriz | 1951  | 2019 | 08<br>12 |        |
| 51        | 507     | Curitibanos              | 1988  | 2019 | 31       | Epagri | 142        | 2049033             | São Bonifácio             | 1940  | 2019 | 40       |        |
| 52        | 2653002 | Dionísio Cerqueira       | 1973  | 2019 | 46       | ANA    | 143        | 2652002             | São Domingos              | 1973  | 2019 | 46       | ANA    |
| 53        | 2748006 | Florianópolis            | 1949  | 2018 | 69       | ANA    | 145        | 2849003             | São Joaquim               | 1943  | 1975 | 32       | ANA    |
| 54        | 2849006 | Forquilhinha             | 1946  | 2017 | 71       | ANA    | 146        | 2849014             | São Joaquim               | 1961  | 1998 | 37       | ANA    |
| 55        | 2648027 | Garuva                   | 1977  | 2019 | 42       | ANA    | 147        | 523                 | São Joaquim               | 1961  | 2019 | 56       | Epagri |
| 56        | 2648000 | Gaspar                   | 1935  | 1966 | 31       | ANA    | 148        | 124                 | São José                  | 1969  | 2019 | 51       | Epagri |
| 57        | 2748019 | Governador Celso Ramos   | 1977  | 2016 | 39       | ANA    | 149        | 2653005             | São José do Cedro         | 1973  | 2019 | 46       | ANA    |
| 58        | 2849008 | Grão Pará                | 1946  | 2019 | 73       | ANA    | 150        | 2750008             | São José do Cerrito       | 1961  | 2019 | 58       | ANA    |
| 59        | 2749001 | Ibirama                  | 1934  | 2019 | 85       | ANA    | 151        | 2750020             | São José do Cerrito       | 1977  | 2019 | 42       | ANA    |
| 60        | 2749005 | Ibirama                  | 1941  | 2019 | 78       | ANA    | 152        | 2652031             | São Lourenço do Oeste     | 1977  | 2019 | 42       | ANA    |
| 61        | 2749022 | Ibirama                  | 1944  | 1988 | 44       | ANA    | 153        | 2849002             | São Martinho              | 1940  | 2019 | /9       |        |
| 62        | 2849022 | lçara                    | 1978  | 2019 | 41       | ANA    | 154        | 2848000             | São Martinho              | 1977  | 2019 | 42       |        |
| 63        | 2648001 | Ilhota                   | 1928  | 2014 | 86       | ANA    | 155        | 2653007             | Saudades                  | 1955  | 2019 | 64       | ANA    |
| 64        | 2848007 | Imbituba                 | 1977  | 2019 | 42       | ANA    | 157        | 2949003             | Sombrio                   | 1977  | 2019 | 42       | ANA    |
| 65        | 2649001 | Indaial                  | 1941  | 2015 | 74       | ANA    | 158        | 2749003             | Taió                      | 1930  | 2019 | 89       | ANA    |
| 66        | 2049005 | Indaiai                  | 1941  | 2015 | /4       |        | 159        | 2750014             | Taió                      | 1966  | 2019 | 53       | ANA    |
| 67        | 2649027 | Indaiai                  | 1944  | 1989 | 45       |        | 160        | 2750021             | Taió                      | 1985  | 2019 | 34       | ANA    |
| 68        | 2753013 | Ipora do Oeste           | 1977  | 2019 | 42       |        | 161        | 2849019             | Timbé do Sul              | 1977  | 2019 | 42       | ANA    |
| 69        | 2652001 | ipuminim                 | 1970  | 2019 | 49       |        | 162        | 2649004             | Timbó                     | 1929  | 2019 | 90       | ANA    |
| 70        | 2751011 | Irani                    | 1977  | 2019 | 42       |        | 163        | 2649026             | Timbó                     | 1944  | 1989 | 45       | ANA    |
| /1        | 2649054 | Itaiópolis               | 1977  | 2014 | 20       |        | 164        | 2749013             | Trombudo Central          | 1946  | 2019 | 73       | ANA    |
| 72        | 2049030 | Itaiópolis               | 1022  | 2013 | 36       |        | 165        | 2849000             | Tubarão                   | 1940  | 2019 | /9       |        |
| / 3<br>7/ | 182     | Itaiaí                   | 1981  | 2019 | 25       | Enagri | 100<br>167 | 2049027<br>28/19021 | Urubici                   | 1947  | 2019 | 52<br>75 | ΔΝΔ    |
| 74        | 477     | Itaniranga               | 1988  | 2019 | 33       | Enagri | 162        | 2849011             | Urussanga                 | 1949  | 1994 | 45       | ANA    |
| 75        | 2749002 | ltunoranga               | 1941  | 2019 | 78       |        | 169        | 434                 | Urussanga                 | 1961  | 2018 | 52       | Epagri |
| 70        | 2749017 | ltunoranga               | 1971  | 2019 | 48       | ΔΝΔ    | 170        | 2651001             | Vargem Bonita             | 1944  | 2019 | 75       | ANA    |
| 72        | 191     | ltunoranga               | 1987  | 2019 | -0<br>31 | Enagri | 171        | 2749033             | Vidal Ramos               | 1977  | 2019 | 42       | ANA    |
| 79        | 2849020 |                          | 1977  | 2019 | 42       | ANA    | 172        | 2749046             | Vidal Ramos               | 1988  | 2019 | 31       | ANA    |
| 29<br>20  | 2649012 | Jaraguá do Sul           | 1962  | 2007 | 45       | ANA    | 173        | 2751009             | Videira                   | 1940  | 1979 | 39       | ANA    |
| 80<br>81  | 2649037 | Jaraguá do Sul           | 1943  | 2014 |          | ANA    | 174        | 442                 | Videira                   | 1987  | 2019 | 32       | Epagri |
| ۵1<br>۵۲  | 2652021 | lardinónolis             | 1977  | 2014 | Δ?       | ΔΝΔ    | 175        | 2649058             | Vitor Meireles            | 1978  | 2019 | 41       | ANA    |
| 82        | 2751004 | Joacaba                  | 1944  | 2019 | 75       | ANA    | 176        | 2649053             | Witmarsum                 | 1977  | 2019 | 42       | ANA    |
| 84        | 2648005 | Joinville                | 1953  | 1989 | 36       | ANA    |            |                     |                           |       |      |          |        |
| 85        | 2648014 | Joinville                | 1940  | 2019 | 79       | ANA    |            |                     |                           |       |      |          |        |
| 86        | 2648033 | Joinville                | 1988  | 2019 | 31       | ANA    |            |                     |                           |       |      |          |        |
| 87        | 2648034 | Joinville                | 1987  | 2019 | 32       | ANA    |            |                     |                           |       |      |          |        |
| 88        | 2649060 | Joinville                | 1982  | 2019 | 37       | ANA    |            |                     |                           |       |      |          |        |
| 89        | 2649061 | José Boiteux             | 1977  | 2019 | 42       | ANA    |            |                     |                           |       |      |          |        |
| 90        | 2749031 | Lages                    | 1958  | 2019 | 61       | ANA    |            |                     |                           |       |      |          |        |
| 91        | 2750005 | Lages                    | 1946  | 2013 | 67       | ANA    |            |                     |                           |       |      |          |        |



The spatialization of the data and the elaboration of the maps were carried out with the geoprocessing software ArcGis 10.8 (ESRI) and the application of the *kriging ordinary* geostatistical interpolation tools

## **3. DEVELOPMENT**

Table 2 contains the coefficients of the heavy rainfall equations for each rainfall station and the evaluation criteria. The standard error (EP) of the adjusted equation ranged from 0.031 to 0.082 mm h<sup>-1</sup>, with EP values equal to zero indicating a perfect fit of the data. The NS Coefficient ranged from 0.9282 to 0.9967. The NS is widely used to evaluate hydrological models and can vary from 0 to 1, where the NS value equal to 1 indicates a perfect fit of the model to the observed data (NASH; SUTCLIFFE, 1970). According to Silva et al. (2012), NS values greater than 0.75 are considered good, between 0.36 and 0.75 are considered acceptable and, below than 0.36, the model is unacceptable. Lima Neto et al. (2021), adjusting the IDF equation by disaggregating daily rainfall for 31 cities in the state of Pernambuco, obtained NS above 0.98. The concordance index (d) ranged from 0.983 to 0.999. This index can assume values from 0 (no agreement) to 1.0 (perfect agreement). The mean percentage error (PBIAS) ranged from -0.0012 to 0.0244% showing that the deviations are small. The simulation is considered perfect when PBIAS equals 0; values greater than 0 indicate model underestimation bias and values lower than 0 indicate model overestimation bias. The mean absolute error (MAE) varied between 0.0494 and 0.2590 mm h<sup>-1</sup>. MAE indicates the error in the units of the study variable, and is therefore useful in evaluating the results. The model is considered perfect when MAE is equal to 0 (MORIASI et al., 2007). The coefficient of determination (R<sup>2</sup>) ranged from 0.9696 to 0.9984, indicating that the equations explain over 96% of the intensity variation. Some works with IDF equation adjustments for duration lower than 1 day report R<sup>2</sup> coefficient above 0.94 (OLIVEIRA et al., 2005; SOUZA et al, 2012). Aragão et al. (2013) emphasize that the high values of R<sup>2</sup> indicate that this can be a biased indicator to assess the adjustment of the equation to the sample data.

 Table 2 - Coefficients of the heavy rainfall equation and evaluation criteria.

|          | Coefficients of the IDF equation |                    |                | equation         | Coefficients of the IDF equation |                   |                  |         |                  |                  | Coefficients of the IDF equation |                |                  |      |                  |                   | Coefficients of the IDF equation |                  |                  |        |                                                   |
|----------|----------------------------------|--------------------|----------------|------------------|----------------------------------|-------------------|------------------|---------|------------------|------------------|----------------------------------|----------------|------------------|------|------------------|-------------------|----------------------------------|------------------|------------------|--------|---------------------------------------------------|
| Station  | К                                | m                  | b              | n                | EP                               | NS                | d                | PBIAS   | MAE              | R <sup>2</sup>   | Station                          | К              | m                | b    | n                | EP                | NS                               | d                | PBIAS            | MAE    | R²                                                |
| 1        | 24,16                            | 0,2054             | 0,00           | 0,6227           | 0,0425                           | 0,9892            | 0,9974           | 0,0017  | 0,0952           | 0,9952           | 91                               | 20,32          | 0,1880           | 0,00 | 0,6071           | 0,0670            | 0,9565                           | 0,9897           | 0,0063           | 0,1397 | 0,9817                                            |
| 2        | 18,31                            | 0,2001             | 0,00           | 0,5807           | 0,0461                           | 0,9806            | 0,9954           | 0,0005  | 0,0931           | 0,9924           | 92                               | 23,68          | 0,2606           | 0,00 | 0,6616           | 0,0564            | 0,9709                           | 0,9930           | 0,0045           | 0,1463 | 0,9873                                            |
| 3        | 18,76                            | 0,1848             | 0,00           | 0,5979           | 0,0457                           | 0,9811            | 0,9955           | 0,0012  | 0,0828           | 0,9920           | 93                               | 30,22          | 0,1634           | 0,00 | 0,6711           | 0,0570            | 0,9804                           | 0,9953           | 0,0042           | 0,1283 | 0,9915                                            |
| 4<br>F   | 21,72                            | 0,1696             | 0,00           | 0,6695           | 0,0443                           | 0,9847            | 0,9959           | 0,0115  | 0,0747           | 0,9943           | 94                               | 23,80          | 0,1604           | 0,00 | 0,6272           | 0,0402            | 0,9940                           | 0,9985           | 0,0029           | 0,0647 | 0,9970                                            |
| 5        | 22,74                            | 0,1580             | 0,00           | 0,6200           | 0,0583                           | 0,9806            | 0,9953           | 0,0030  | 0,1097           | 0,9917           | 95                               | 22,44          | 0,1439           | 0,00 | 0,6175           | 0,0348            | 0,9944                           | 0,9980           | 0,0035           | 0,0593 | 0,9973                                            |
| 7        | 22,82                            | 0,1751             | 0,00           | 0,0324           | 0,0309                           | 0,9934            | 0,9989           | 0,0030  | 0,0007           | 0,9964           | 97                               | 20,50          | 0,2049           | 0,00 | 0,0333           | 0,0430            | 0,9890                           | 0,9975           | 0,0014           | 0,1000 | 0,9951                                            |
| ,<br>8   | 26.09                            | 0.1510             | 0.00           | 0.6256           | 0.0532                           | 0.9851            | 0.9961           | 0.0099  | 0.1099           | 0.9934           | 98                               | 19.56          | 0.1995           | 0.00 | 0.6208           | 0.0330            | 0.9929                           | 0.9983           | 0.0002           | 0.0611 | 0.9968                                            |
| 9        | 18,20                            | 0,1745             | 0,00           | 0,6098           | 0,0643                           | 0,9527            | 0,9889           | 0,0059  | 0,1099           | 0,9803           | 99                               | 30,17          | 0,3167           | 0,00 | 0,7207           | 0,0364            | 0,9966                           | 0,9991           | 0,0064           | 0,0859 | 0,9984                                            |
| 10       | 27,59                            | 0,1576             | 0,00           | 0,6501           | 0,0344                           | 0,9927            | 0,9982           | 0,0010  | 0,0694           | 0,9966           | 100                              | 19,12          | 0,2256           | 0,00 | 0,6048           | 0,0342            | 0,9850                           | 0,9964           | -0,0007          | 0,0683 | 0,9939                                            |
| 11       | 31,31                            | 0,2118             | 0,00           | 0,6536           | 0,0454                           | 0,9877            | 0,9970           | 0,0025  | 0,1237           | 0,9943           | 101                              | 22,94          | 0,1991           | 0,00 | 0,6256           | 0,0319            | 0,9932                           | 0,9984           | -0,0011          | 0,0618 | 0,9973                                            |
| 12       | 21,75                            | 0,1763             | 0,00           | 0,6394           | 0,0424                           | 0,9916            | 0,9979           | 0,0011  | 0,0706           | 0,9963           | 102                              | 12,31          | 0,1570           | 0,00 | 0,5247           | 0,0734            | 0,9658                           | 0,9911           | 0,0137           | 0,1099 | 0,9832                                            |
| 13       | 22,59                            | 0,1760             | 0,00           | 0,6451           | 0,0449                           | 0,9862            | 0,9967           | 0,0014  | 0,0822           | 0,9941           | 103                              | 19,35          | 0,2388           | 0,00 | 0,6006           | 0,0642            | 0,9832                           | 0,9960           | 0,0026           | 0,1274 | 0,9936                                            |
| 14       | 22,26                            | 0,1921             | 3,33           | 0,6549           | 0,0507                           | 0,9868            | 0,9968           | 0,0025  | 0,0783           | 0,9940           | 104                              | 21,79          | 0,1625           | 0,00 | 0,6124           | 0,0374            | 0,9935                           | 0,9984           | 0,0017           | 0,0651 | 0,9969                                            |
| 15       | 78,25                            | 0,2137             | 16,27          | 0,8381           | 0,0805                           | 0,9820            | 0,9954           | 0,0157  | 0,1837           | 0,9912           | 105                              | 31,33          | 0,1579           | 0,00 | 0,6669           | 0,0533            | 0,9792                           | 0,9949           | 0,0044           | 0,1250 | 0,9905                                            |
| 16       | 31,18                            | 0,2249             | 0,00           | 0,6562           | 0,0773                           | 0,9497            | 0,9878           | 0,0119  | 0,2412           | 0,9771           | 106                              | 24,16          | 0,1801           | 0,00 | 0,5975           | 0,0469            | 0,9861                           | 0,9965           | 0,0042           | 0,1071 | 0,9931                                            |
| 17       | 23,09                            | 0,1954             | 0,00           | 0,6447           | 0,0743                           | 0,9629            | 0,9912           | 0,0074  | 0,1507           | 0,9846           | 107                              | 16,29          | 0,2214           | 0,00 | 0,5619           | 0,0797            | 0,9282                           | 0,9831           | 0,0111           | 0,1785 | 0,9696                                            |
| 18       | 46,93                            | 0,2559             | 11,78          | 0,7990           | 0,0427                           | 0,9894            | 0,9974           | 0,0013  | 0,0922           | 0,9952           | 108                              | 28,52          | 0,2067           | 0,00 | 0,6820           | 0,0758            | 0,9864                           | 0,9965           | 0,0136           | 0,1430 | 0,9934                                            |
| 19       | 30,91                            | 0,1622             | 6,18           | 0,6854           | 0,0423                           | 0,9953            | 0,9988           | 0,0042  | 0,0643           | 0,9977           | 109                              | 14,31          | 0,2498           | 0,00 | 0,5460           | 0,0638            | 0,9535                           | 0,9892           | 0,0032           | 0,1355 | 0,9822                                            |
| 20       | 29,13                            | 0,2024             | 5,80           | 0,6840           | 0,0418                           | 0,9893            | 0,9974           | 0,0024  | 0,0823           | 0,9949           | 110                              | 18,80          | 0,2130           | 0,00 | 0,5950           | 0,0483            | 0,9788                           | 0,9950           | 0,0008           | 0,1019 | 0,9917                                            |
| 21       | 27,41                            | 0,1998             | 0,20           | 0,6643           | 0,0469                           | 0,9882            | 0,9971           | 0,0027  | 0,1063           | 0,9947           | 111                              | 28,98          | 0,2495           | 0,00 | 0,6484           | 0,0500            | 0,9765                           | 0,9945           | -0,0003          | 0,1401 | 0,9909                                            |
| 22       | 20,50<br>12 50                   | 0,1090             | 0,00           | 0,0047           | 0,0525                           | 0,9952            | 0,9966           | 0,0022  | 0,0025           | 0,9970           | 112                              | 25,15          | 0,1711           | 0,00 | 0,5070           | 0,0017            | 0,9702                           | 0,9929           | 0,0041           | 0,1474 | 0,9875                                            |
| 23       | 42,39<br>57 11                   | 0,1852             | 7,39<br>17 03  | 0,7550           | 0,0403                           | 0,9900            | 0,9973           | 0,0001  | 0,0870           | 0,9930           | 113                              | 24,07          | 0,1804           | 0,00 | 0,0093           | 0,0324            | 0,9750                           | 0,9938           | 0,0009           | 0,1105 | 0,9901                                            |
| 25       | 39.19                            | 0,2473             | 6.52           | 0,7146           | 0.0481                           | 0.9919            | 0.9979           | 0.0061  | 0.0966           | 0,9960           | 115                              | 29.13          | 0.1735           | 0.00 | 0.6434           | 0.0415            | 0.9951                           | 0.9988           | 0.0035           | 0.0781 | 0.9976                                            |
| 26       | 68.33                            | 0.1892             | 26.82          | 0.8233           | 0.0501                           | 0.9783            | 0.9947           | 0.0043  | 0.0930           | 0.9898           | 116                              | 33.78          | 0.2460           | 0.00 | 0.6520           | 0.0544            | 0.9840                           | 0.9962           | -0.0006          | 0.1776 | 0.9944                                            |
| 27       | 43,11                            | 0,1712             | 12,66          | 0,7356           | 0,0466                           | 0,9852            | 0,9964           | 0,0031  | 0,0915           | 0,9930           | 117                              | 11,97          | 0,3622           | 0,00 | 0,5358           | 0,0733            | 0,9411                           | 0,9865           | 0,0042           | 0,1949 | 0,9778                                            |
| 28       | 35,32                            | 0,1018             | 0,09           | 0,8139           | 0,0726                           | 0,9738            | 0,9928           | 0,0244  | 0,0826           | 0,9901           | 118                              | 24,68          | 0,2850           | 0,00 | 0,6443           | 0,0537            | 0,9674                           | 0,9925           | -0,0008          | 0,1549 | 0,9883                                            |
| 29       | 19,29                            | 0,1932             | 0,09           | 0,6200           | 0,0532                           | 0,9750            | 0,9941           | 0,0017  | 0,0954           | 0,9898           | 119                              | 14,85          | 0,3686           | 0,00 | 0,5749           | 0,0795            | 0,9318                           | 0,9840           | 0,0100           | 0,2590 | 0,9714                                            |
| 30       | 56,55                            | 0,1692             | 11,94          | 0,7962           | 0,0404                           | 0,9952            | 0,9988           | 0,0060  | 0,0694           | 0,9978           | 120                              | 30,05          | 0,1783           | 0,00 | 0,6730           | 0,0418            | 0,9957                           | 0,9989           | 0,0038           | 0,0722 | 0,9979                                            |
| 31       | 64,54                            | 0,1729             | 27,76          | 0,8316           | 0,0525                           | 0,9713            | 0,9929           | 0,0073  | 0,0866           | 0,9860           | 121                              | 19,54          | 0,1829           | 0,00 | 0,6084           | 0,0533            | 0,9842                           | 0,9962           | 0,0031           | 0,0901 | 0,9927                                            |
| 32       | 28,79                            | 0,1476             | 5,63           | 0,6678           | 0,0311                           | 0,9966            | 0,9991           | 0,0020  | 0,0494           | 0,9983           | 122                              | 14,98          | 0,1889           | 0,00 | 0,5566           | 0,0405            | 0,9867                           | 0,9968           | -0,0002          | 0,0682 | 0,9947                                            |
| 33       | 75,04                            | 0,1987             | 25,65          | 0,8564           | 0,0409                           | 0,9899            | 0,9975           | 0,0030  | 0,0752           | 0,9952           | 123                              | 16,00          | 0,2146           | 0,00 | 0,5201           | 0,0521            | 0,9738                           | 0,9938           | 0,0020           | 0,1215 | 0,9891                                            |
| 34       | 42,01                            | 0,2016             | 7,44           | 0,7333           | 0,0455                           | 0,9934            | 0,9983           | 0,0041  | 0,0948           | 0,9967           | 124                              | 13,02          | 0,2197           | 0,00 | 0,5240           | 0,0652            | 0,9488                           | 0,9881           | 0,0049           | 0,1265 | 0,9796                                            |
| 35       | 22,90                            | 0,2195             | 0,00           | 0,5992           | 0,0506                           | 0,9810            | 0,9953           | 0,0038  | 0,1295           | 0,9911           | 125                              | 17,78          | 0,1776           | 0,00 | 0,5953           | 0,0377            | 0,9894                           | 0,9975           | 0,0000           | 0,0620 | 0,9957                                            |
| 36       | 12,/1                            | 0,1773             | 0,01           | 0,4818           | 0,0647                           | 0,9532            | 0,9888           | 0,0065  | 0,1243           | 0,9794           | 126                              | 34,22          | 0,1734           | 0,00 | 0,6731           | 0,0408            | 0,9931                           | 0,9983           | 0,0012           | 0,0955 | 0,9969                                            |
| 37       | 19,11                            | 0,1975             | 0,01           | 0,5048           | 0,0477                           | 0,9812            | 0,9955           | 0,0011  | 0,1024           | 0,9922           | 127                              | 24,40          | 0,1524           | 0,00 | 0,6047           | 0,0818            | 0,9037                           | 0,9914           | 0,0094           | 0,1735 | 0,9849                                            |
| 30       | 21,09                            | 0,1012             | 0,01           | 0,0114           | 0,0393                           | 0,9803            | 0,9907           | 0,0001  | 0,1009           | 0,9930           | 128                              | 32 18          | 0,1017           | 0,00 | 0,0314           | 0,0443            | 0,9870                           | 0,9908           | 0,0024           | 0,0040 | 0,9959                                            |
| 40       | 29.55                            | 0,2200             | 0.01           | 0.6842           | 0.0505                           | 0,9889            | 0,9971           | 0.0094  | 0.0938           | 0,9950           | 120                              | 24.35          | 0.2018           | 0.00 | 0,6690           | 0.0391            | 0,9956                           | 0,9989           | 0.0022           | 0.0655 | 0,9978                                            |
| 41       | 19.11                            | 0.2058             | 0.01           | 0.5786           | 0.0509                           | 0.9793            | 0.9950           | 0.0024  | 0.1117           | 0.9907           | 130                              | 15.17          | 0.2111           | 0.00 | 0.5796           | 0.0513            | 0.9666                           | 0.9921           | 0.0017           | 0.0913 | 0.9866                                            |
| 42       | 21,75                            | 0,2191             | 0,01           | 0,5913           | 0,0515                           | 0,9891            | 0,9974           | 0,0017  | 0,1167           | 0,9955           | 132                              | 29,34          | 0,1986           | 0,00 | 0,6714           | 0,0398            | 0,9956                           | 0,9989           | 0,0020           | 0,0787 | 0,9979                                            |
| 43       | 19,09                            | 0,2276             | 0,01           | 0,5683           | 0,0454                           | 0,9837            | 0,9961           | -0,0002 | 0,1097           | 0,9937           | 133                              | 25,99          | 0,1545           | 0,00 | 0,6106           | 0,0538            | 0,9843                           | 0,9962           | 0,0032           | 0,1206 | 0,9933                                            |
| 44       | 18,17                            | 0,1994             | 0,01           | 0,5570           | 0,0466                           | 0,9805            | 0,9953           | 0,0011  | 0,0989           | 0,9919           | 134                              | 23,72          | 0,1781           | 0,00 | 0,6301           | 0,0389            | 0,9919                           | 0,9980           | 0,0003           | 0,0752 | 0,9966                                            |
| 45       | 27,57                            | 0,1492             | 0,01           | 0,6402           | 0,0473                           | 0,9916            | 0,9979           | 0,0024  | 0,0854           | 0,9962           | 135                              | 22,66          | 0,1759           | 0,00 | 0,6110           | 0,0537            | 0,9821                           | 0,9957           | 0,0033           | 0,1051 | 0,9922                                            |
| 46       | 21,88                            | 0,2020             | 0,01           | 0,6050           | 0,0579                           | 0,9721            | 0,9933           | 0,0042  | 0,1442           | 0,9881           | 136                              | 19,88          | 0,2309           | 0,00 | 0,6193           | 0,0481            | 0,9872                           | 0,9970           | -0,0002          | 0,0945 | 0,9952                                            |
| 47       | 37,05                            | 0,1919             | 0,01           | 0,7069           | 0,0580                           | 0,9890            | 0,9973           | 0,0056  | 0,1349           | 0,9948           | 137                              | 25,93          | 0,1624           | 0,00 | 0,6019           | 0,0515            | 0,9849                           | 0,9963           | 0,0039           | 0,1167 | 0,9928                                            |
| 48       | 25,33                            | 0,1595             | 0,01           | 0,6559           | 0,0418                           | 0,9927            | 0,9982           | 0,0020  | 0,0734           | 0,9967           | 138                              | 27,68          | 0,1683           | 0,00 | 0,6550           | 0,0562            | 0,9738                           | 0,9937           | 0,0039           | 0,1288 | 0,9889                                            |
| 49       | 18,79                            | 0,1938             | 0,01           | 0,5960           | 0,0527                           | 0,9731            | 0,9937           | 0,0008  | 0,0967           | 0,9896           | 139                              | 20,89          | 0,1868           | 0,00 | 0,5854           | 0,0670            | 0,9598                           | 0,9906           | 0,0052           | 0,1609 | 0,9842                                            |
| 50       | 19,58                            | 0,2064             | 0,01           | 0,6053           | 0,0453                           | 0,9839            | 0,9961           | 0,0006  | 0,0895           | 0,9935           | 140                              | 24,73          | 0,1502           | 0,00 | 0,6163           | 0,0407            | 0,9940                           | 0,9985           | 0,0049           | 0,0771 | 0,9971                                            |
| 51       | 25,33                            | 0,1814             | 0,01           | 0,6064           | 0,0513                           | 0,9900            | 0,9975           | 0,0028  | 0,1043           | 0,9954           | 141                              | 35,44          | 0,2011           | 0,00 | 0,6946           | 0,0606            | 0,9842                           | 0,9962           | 0,0054           | 0,1507 | 0,9928                                            |
| 52       | 26,25                            | 0,1714             | 0,01           | 0,0108           | 0,0438                           | 0,9879            | 0,9971           | 0,0018  | 0,1080           | 0,9940           | 142                              | 22,52          | 0,1710           | 0,00 | 0,0784           | 0,0443            | 0,9918                           | 0,9979           | 0,0030           | 0,0050 | 0,9939                                            |
| 54       | 20.37                            | 0,2199             | 0.01           | 0.6165           | 0.0598                           | 0,9646            | 0,9917           | 0.0020  | 0.1213           | 0.9864           | 143                              | 26,14          | 0,1796           | 0.00 | 0.6184           | 0.0464            | 0.9879                           | 0.9968           | 0.0086           | 0,1000 | 0.9947                                            |
| 55       | 20.02                            | 0.2034             | 0.01           | 0.5128           | 0.0670                           | 0.9586            | 0.9896           | 0.0112  | 0.2087           | 0,9797           | 145                              | 25.05          | 0.2360           | 0.00 | 0,6906           | 0.0571            | 0.9922                           | 0.9980           | 0.0074           | 0.0971 | 0,9961                                            |
| 56       | 29,56                            | 0,2133             | 0,01           | 0,6929           | 0,0563                           | 0,9922            | 0,9980           | 0,0084  | 0,1058           | 0,9962           | 146                              | 16,64          | 0,3104           | 0,00 | 0,5964           | 0,0736            | 0,9563                           | 0,9898           | 0,0060           | 0,1983 | 0,9825                                            |
| 57       | 30,36                            | 0,2018             | 0,01           | 0,6641           | 0,0643                           | 0,9837            | 0,9960           | 0,0051  | 0,1475           | 0,9926           | 147                              | 23,57          | 0,2115           | 0,00 | 0,6360           | 0,0567            | 0,9770                           | 0,9945           | 0,0036           | 0,1294 | 0,9903                                            |
| 58       | 25,64                            | 0,2089             | 0,01           | 0,6600           | 0,0426                           | 0,9912            | 0,9979           | 0,0016  | 0,0874           | 0,9960           | 148                              | 41,74          | 0,2549           | 0,00 | 0,7299           | 0,0530            | 0,9724                           | 0,9933           | 0,0049           | 0,1790 | 0,9874                                            |
| 59       | 20,92                            | 0,1862             | 0,01           | 0,6388           | 0,0392                           | 0,9884            | 0,9972           | -0,0008 | 0,0686           | 0,9956           | 149                              | 32,16          | 0,1777           | 0,00 | 0,6494           | 0,0504            | 0,9878                           | 0,9969           | 0,0069           | 0,1219 | 0,9940                                            |
| 60       | 18,87                            | 0,1944             | 0,01           | 0,6252           | 0,0393                           | 0,9916            | 0,9980           | 0,0013  | 0,0648           | 0,9962           | 150                              | 19,11          | 0,2164           | 0,00 | 0,5959           | 0,0457            | 0,9839                           | 0,9962           | -0,0012          | 0,0932 | 0,9943                                            |
| 61       | 73,60                            | 0,1679             | 20,15          | 0,8734           | 0,0341                           | 0,9960            | 0,9990           | 0,0030  | 0,0510           | 0,9980           | 151                              | 16,98          | 0,1883           | 0,00 | 0,5598           | 0,0531            | 0,9791                           | 0,9949           | 0,0045           | 0,1044 | 0,9900                                            |
| 62       | 32,49                            | 0,2128             | 5,61           | 0,6947           | 0,0398                           | 0,9900            | 0,9976           | 0,0012  | 0,0865           | 0,9954           | 152                              | 21,03          | 0,1939           | 0,00 | 0,5678           | 0,0519            | 0,9766                           | 0,9945           | 0,0015           | 0,1230 | 0,9905                                            |
| 63<br>64 | /1,06                            | 0,1878             | 19,48          | 0,8518           | 0,0413                           | 0,9914            | 0,9979           | 0,0029  | 0,0729           | 0,9958           | 153                              | 20,01          | 0,2312           | 0,00 | 0,6244           | 0,0440            | U,9866                           | 0,9968           | -0,0009          | 0,0888 | 0,9950                                            |
| 04<br>65 | 52,40<br>20 02                   | 0,1083             | 4,31<br>12 17  | 0,7845           | 0,0575                           | 0,9914<br>0.0000  | 0,9978           | 0,0094  | 0,1086           | 0,9958           | 154                              | 24,3U          | 0,2026           | 0,00 | 0,0158           | 0,0711            | 0,9688                           | 0,9926<br>0.0097 | 0,0059           | 0,1635 | 0,986/                                            |
| 66       | 30,82<br>35 99                   | 0,2013<br>0 1060   | 12,17<br>12,60 | 0,000Z           | 0,0474                           | 0,9082<br>0 9861  | 0,3971           | 0,0020  | 0,0800           | 0,9940<br>0 9938 | 155                              | 34,04<br>27 60 | 0,1090<br>0,1090 | 0,00 | 0,7232           | 0,0425<br>0 0/152 | 0,3949<br>N QQQA                 | 0,398/<br>N 9975 | 0,0044<br>0 000⊑ | 0,0751 | 0,9912                                            |
| 67       | 20.92                            | 0.1700             | 0.00           | 0.6228           | 0.0512                           | 0.9850            | 0.9963           | 0.0052  | 0.0858           | 0.9927           | 150                              | 37.59          | 0,1373           | 0.00 | 0.7095           | 0.0577            | 0.9798                           | 0.9952           | 0.0038           | 0.1266 | 0.9914                                            |
| 68       | 23.76                            | 0.2196             | 3.97           | 0.5987           | 0.0462                           | 0.9771            | 0.9945           | 0.0022  | 0.1128           | 0.9899           | 158                              | 23.18          | 0.1596           | 0.00 | 0.6316           | 0.0365            | 0.9949                           | 0.9987           | 0.0015           | 0.0645 | 0.9975                                            |
| 69       | 17,00                            | 0,2303             | 0,00           | 0,5533           | 0,0612                           | 0,9672            | 0,9920           | 0,0066  | 0,1476           | 0,9847           | 159                              | 26,55          | 0,1428           | 0,00 | 0,6389           | 0,0443            | 0,9888                           | 0,9973           | 0,0015           | 0,0821 | 0,9950                                            |
| 70       | ,<br>55,49                       | 0,2315             | ,<br>24,37     | 0,7630           | 0,0437                           | 0,9856            | 0,9965           | 0,0027  | 0,0903           | 0,9934           | 160                              | 21,08          | 0,1840           | 0,00 | 0,6098           | 0,0436            | 0,9913                           | ,<br>0,9978      | 0,0043           | 0,0760 | 0,9957                                            |
| 71       | 65,56                            | 0,2369             | 14,06          | 0,8280           | 0,0434                           | 0,9890            | 0,9973           | 0,0018  | 0,1075           | 0,9949           | 161                              | 33,50          | 0,1211           | 0,00 | 0,6403           | 0,0468            | 0,9847                           | 0,9963           | 0,0008           | 0,1080 | 0,9939                                            |
| 72       | 55,87                            | 0,2681             | 12,58          | 0,8207           | 0,0347                           | 0,9967            | 0,9992           | 0,0041  | 0,0682           | 0,9984           | 162                              | 27,05          | 0,1787           | 0,00 | 0,6634           | 0,0349            | 0,9963                           | 0,9991           | 0,0022           | 0,0638 | 0,9981                                            |
| 73       | 16,94                            | 0,2295             | 0,00           | 0,5593           | 0,0779                           | 0,9363            | 0,9853           | 0,0082  | 0,1900           | 0,9750           | 163                              | 30,40          | 0,1819           | 0,00 | 0,7054           | 0,0469            | 0,9935                           | 0,9983           | 0,0072           | 0,0779 | 0,9969                                            |
| 74       | 55,91                            | 0,2465             | 11,15          | 0,7888           | 0,0306                           | 0,9955            | 0,9989           | 0,0006  | 0,0767           | 0,9979           | 164                              | 18,52          | 0,1957           | 0,00 | 0,6102           | 0,0412            | 0,9863                           | 0,9967           | -0,0010          | 0,0701 | 0,9949                                            |
| 75       | 27,47                            | 0,1826             | 0,00           | 0,6232           | 0,0520                           | 0,9906            | 0,9976           | 0,0052  | 0,1093           | 0,9953           | 165                              | 23,73          | 0,2290           | 0,00 | 0,6569           | 0,0579            | 0,9723                           | 0,9935           | 0,0008           | 0,1237 | 0,9895                                            |
| 76       | 18,36                            | 0,1877             | 0,00           | 0,5947           | 0,0413                           | 0,9918            | 0,9980           | 0,0035  | 0,0745           | 0,9959           | 166                              | 30,52          | 0,1914           | 0,00 | 0,6403           | 0,0625            | 0,9902                           | 0,9975           | 0,0084           | 0,1382 | 0,9952                                            |
| //       | 19,59                            | 0,2214             | U,68           | 0,6150           | 0,0441                           | 0,9806            | 0,9954           | 0,0002  | 0,0925           | 0,9922           | 167                              | 20,41          | 0,1809           | 0,00 | 0,6128           | 0,0501            | 0,9826                           | 0,9958           | 0,0023           | 0,1001 | 0,9926                                            |
| /ð<br>70 | 37,36<br>27 75                   | 0,1385             | 7,45           | 0,7192           | 0,0341                           | 0,9928            | 0,9982           | 0,0023  | 0,0564           | 0,9965           | 168                              | 26,39          | 0,3054           | 0,00 | 0,6849           | 0,0444            | 0,9918                           | 0,9980           | 0,0003           | 0,1208 | 0,9967                                            |
| 80       | 37,75<br>A2 70                   | 0,1982             | 0,00<br>2.00   | 0,/181<br>0 7215 | 0,0792                           | 0,9773            | 0,9945           | 0,0103  | 0,1892           | 0,9890<br>0 0070 | 109                              | 20,03<br>20 70 | 0,2359<br>0 2104 | 0,00 |                  | 0,0000<br>0 0622  | 0,955/<br>0 0567                 | 0,9891           | 0,0039           | 0,1053 | U,9032<br>N D D D D D D D D D D D D D D D D D D D |
| 80<br>81 | 43,19<br>77 76                   | 0,700,0<br>0,702,8 | 3,20<br>21 06  | 0,7312           | 0,0401                           | 0,3933<br>0 07/10 | 0,3388<br>0,3388 | 0,0003  | 0,0795<br>0 1259 | 0,9978<br>0 9878 | 17U<br>171                       | 20,78<br>21 64 | 0,∠184<br>∩ 1011 | 0,00 | 0,5895<br>0 6207 | 0,0032<br>0.0/60  | 0,9002<br>0 0010                 | 0,5090<br>0 9070 | 0,0038           | 0.0865 | 0,3021                                            |
| 82       | 22.91                            | 0.1643             | 0.00           | 0.5984           | 0.0389                           | 0.9928            | 0.9982           | 0.0028  | 0.0790           | 0.9964           | 172                              | 19.11          | 0.1657           | 0.00 | 0.6025           | 0.0383            | 0.9907                           | 0.9977           | 0.0035           | 0.0686 | 0.9954                                            |
| 83       | 18,10                            | 0,2138             | 0,05           | 0,5833           | 0,0449                           | 0,9833            | 0,9960           | 0,0002  | 0,0895           | 0,9933           | 173                              | 20,17          | 0,1506           | 0,00 | 0,6306           | 0,0499            | 0,9871                           | 0,9968           | 0,0046           | 0,0737 | 0,9936                                            |
| 84       | 49,16                            | 0,1343             | 0,61           | 0,7279           | 0,0612                           | 0,9832            | 0,9957           | 0,0112  | 0,1453           | 0,9917           | 174                              | 24,73          | 0,1635           | 0,00 | 0,6200           | 0,0385            | 0,9905                           | 0,9977           | 0,0014           | 0,0779 | 0,9957                                            |
| 85       | 64,17                            | 0,2017             | 16,43          | 0,7981           | 0,0661                           | 0,9881            | 0,9969           | 0,0112  | 0,1389           | 0,9942           | 175                              | 17,99          | 0,1908           | 0,00 | 0,5974           | 0,0611            | 0,9642                           | 0,9916           | 0,0036           | 0,1173 | 0,9855                                            |
| 86       | 37,63                            | 0,1948             | 4,13           | 0,6578           | 0,0337                           | 0,9963            | 0,9991           | 0,0023  | 0,0845           | 0,9982           | 176                              | 23,61          | 0,1637           | 0,00 | 0,6422           | 0,0495            | 0,9807                           | 0,9954           | 0,0020           | 0,0904 | 0,9919                                            |
| 87       | 79,52                            | 0,1658             | 17,34          | 0,7399           | 0,0395                           | 0,9953            | 0,9988           | 0,0032  | 0,1116           | 0,9977           |                                  |                |                  |      |                  |                   |                                  |                  |                  |        |                                                   |
| 88       | 45,63                            | 0,1620             | 7,94           | 0,6880           | 0,0427                           | 0,9950            | 0,9987           | 0,0045  | 0,0932           | 0,9975           |                                  |                |                  |      |                  |                   |                                  |                  |                  |        |                                                   |
| 89       | 68,57                            | 0,1858             | 19,14          | 0,8332           | 0,0400                           | 0,9921            | 0,9981           | 0,0022  | 0,0739           | 0,9963           |                                  |                |                  |      |                  |                   |                                  |                  |                  |        |                                                   |
| 90       | 31,24                            | 0,2236             | 8,08           | 0,7145           | 0,0359                           | 0,9958            | 0,9989           | 0,0023  | 0,0646           | 0,9979           |                                  |                |                  |      |                  |                   |                                  |                  |                  |        |                                                   |



The performance indices show that the adjusted equations allow estimating rainfall intensities lasting from one to ten days and a return period from 2 to 100 years with small deviations in relation to the maximum rainfall values of the HidroChuSC2.0 program. It is important to consider that, as the maximum rainfall lasting from one to ten days was obtained through adjusted probability distributions for each duration, in some seasons inconsistencies occur in such a way that for some durations the estimated maximum rainfall is lower than the estimated rainfall with shorter duration. This is especially true for the longer return periods. Back and Back (2020) had already highlighted this inconsistency in other works (MOMIM et al., 2011). The use of the IDF equation corrects these inconsistencies in such a way that the longer the duration, the greater the intensity (or height) of the rain. The IDF equation also has the advantage of being able to implement calculation routines in hydrological models, allowing the insertion of rainfall data with different durations and return periods.

The K Coefficient ranged from 11.97 to 79.52, however it is observed that 50% of the values are in the range of 20 to 32 (Figure 2A). The intensity of the rain is directly proportional to the value of the "K" coefficient. The highest values occur in the coastal region of the state, especially in the north coast region, which is the region of the state with the highest average monthly rainfall (BACK, 2020). However, in the southern region of the state, where the lowest average annual rainfall occurs, valleys of "K" greater than 45 were also recorded, showing that this coefficient of the heavy rainfall equation is not directly correlated with the annual totals. In the plateau region and west of the state, values range from 15 to 30. The value of "m" ranged from 0.10 to 0.37, with 50% of the data between 0.17 and 0.21 (Figure 2 B). Several authors observed that the "K" coefficient presents the greatest variation when compared to the other coefficients (SILVA et al., 2018). These results indicate variation in precipitation intensities expected for different regions (SOUZA et al., 2012). However, CAMPOS et al. (2014) point out that there is an interaction between these parameters (K, m, b and n), that is, mutual influence between their estimates. In this way, the value of one parameter is influenced by the value of the other, although the combination of these parameters generally results in good IDF prediction models. The spatial distribution of the "m" coefficient was similar to the "K" coefficient (Figure 3B). The "b" coefficient ranged from 0 to 27.8, however, 75% of the values were 0 (Figure 2C). The spatial distribution of the "b" values is similar to the "K" coefficient values.



Figure 2 - Box-plot of the coefficients of the heavy rainfall equations

The "n" coefficient ranged from 0.48 to 0.87 with 50% of the values between 0.60 and 0.68. In Figure 2D, it can be seen that there was less dispersion for this coefficient compared to the others and the spatial distribution showed higher values on the coast and lower values in the west of the state (Figure 3D). Souza et al (2012), adjusting the heavy rainfall equation for 74 stations in the state of Pará, observed that parameters "b" and "n" showed values close to the average of 9.79 and 0.72, respectively. Several authors (OLIVEIRA et al., 2005; SANTOS et al., 2009; ARAGÃO et al., 2013; BORTOLINI et al., 2020), obtained

**LF** 



constant values for the "b" and "m" coefficients when adjusting IDF equations for several rainfall stations. Aragão et al. (2013) attribute this occurrence to the disaggregation of daily rainfall by the method of relationships, since such a trend is not reported in studies that use data from pluviographs.





Suda (2018) highlights that the values "K" and "b" represent characteristics of shortterm heavy rainfall, finding large differences in the geographic distribution of these coefficients. The "b" value and the "m" value in Sherman's formula represent continuation of heavy rainfall. According to Suda (2018), the geographic distributions of the two values are closely related to the topography. In the state of Santa Catarina, rainfall is directly related to the circulation of the atmosphere and the relief, and several authors highlight the effect of orography on the formation and distribution of rainfall (COAN et al., 2014; GOTARDO et al. 2018).

Figures 4 and 5 show the heights of maximum rainfall estimated using the IDF equations for durations of one to ten days and a return period of 10 years (Figure 4) and 100 years (Figure 5). It is observed that there is a marked spatial variation with the highest values in the North and West coast of the State and lowest values in the Medium Itajaí Valley.



Figure 4 – Maximum rainfall lasting from one to ten days and a return period of ten years in Santa Catarina.





#### Figure 5 – Maximum rainfall lasting from one to ten days and a 100-year return period in Santa Catarina





## **4. FINAL CONSIDERATIONS**

The adjusted IDF equations allow estimating the intensity of rainfall lasting from 24 to 240 hours (one to ten days) and a return period from 2 to 100 years for the various rainfall stations in Santa Catarina. The performance indices show that the equations have excellent estimation accuracy and their use corrects possible inconsistencies in the use of probability distributions for each duration.

It was possible to observe spatial variation of the coefficients, especially the coefficient K and b, which may be related to the orography of the region. Intense rainfall has higher values in the north and west coast of the state and lower values in the Middle Itajaí Valley.

### REFERENCES

ARAGÃO, R.; SANTANA, G. R. de; COSTA, C. E. F.F. da; CRUZ, M. A. S.; FIGUEIREDO, E. E.de; SRINIVASAN, V. S. Chuvas intensas para o estado de Sergipe com base em dados desagregados de chuva diária. **Revista Brasileira de Engenharia Agrícola e Ambiental**, v. 17, n. 3, p. 243–252, 2013.

BACK, Á. J. *Chuvas intensas e estimativas da chuva de projeto para o estado de Santa Catarina.* Florianópolis, SC: Epagri, 2022. 204p.

BACK, Á. J.; CADORIN, S. B. Heavy rain equations for Brazil. International Journal of **Development Research**, v. 11, p. 43332-43337, 2021.

BACK, Á. J.; BACK, L. Characterization and frequency analysis of long-term maximum rainfall from São Martinho, Santa Catarina, Brazil. **Engenharia agrícola**, v. 30, p. 142-155, 2022. DOI: 10.13083/reveng.v30i1.13621

BACK, Á. J.; BONFANTE, F. M. Evaluation of generalized extreme value and Gumbel distributions for estimating maximum daily rainfall. **Brazilian Journal of Environmental Sciences**, n. 56, v.4, p. 654–664, 2021. https://doi.org/10.5327/Z217694781015

BALBASTRE-SOLDEVILA, R.; GARCIA-BARTUAL, R.; ANDREA-DOMENECH, I. A comparison of design storms for urban drainage system applications. **Water**, v.11, n.757, 2019.

BELTRÁN, J. M. **Drenaje Agricola**. Madrid: Ministerio de Agricultura, Pesca y Alimentación/Instituto Nacional de Reforma y Desarrollo Agrario, 1986. (Series de Ingeniería Rural y Desarrollo Agrario - Manual Técnico Num. 5)

BERNARD, M. M. Formulas for rainfall intensities of long durations. **Transactions of the American Society of Civil Engineers**, v. 96, p. 592–624, 1932





BEZAK, N.; SRAJ, M.; RUSJAN, S.; MIKOS, M. Impact of the rainfall duration and temporal rainfall distribution defined using the Huff curves on the hydraulic flood modelling results. **Geosciences**, v. 8, n.69, 2018.

BORTOLINI, T. A.; CORSO, C.; MENDES, L A.; BARBOA, AL G.; SCHNEIDER, V. E. Determinação de equações de chuvas intensas para a Encosta Superior do Nordeste do Rio Grande do Sul. **Ciência e Natura**, v.42, e83, 2020. DOI:10.5902/2179460X40357.

CAMPOS, A. R.; SANTOS, G. G.; SILVA, J. B. L.; IRENE FILHO, J.; LOURA, D. S. Equações de intensidade-duração-frequência de chuvas para o estado do Piauí. **Revista Ciência Agronômica, Fortaleza**, v. 45, n.3, p. 488-498, 2014.

COAN, B.D.P.; BACK, Á.J.; BONETTI, A.V. Precipitação mensal e anual provável no estado de Santa Catarina. **Revista Brasileira de Climatologia**, v. 15, p. 122- 142, 2014. DOI: http://dx.doi.org/10.5380/abclima. v15i0.38348

COOK, L. M.; MCGINNIS, S.; SAMARAS, C. The effect of modelling choices on updating intensity-duration-frequency curves and stormwater infrastructure designs for climate change. **Climatic Change**, v.159, p.289–308, 2020.

DIAS, F. P.; HERRMANN, M.L. de P. *Análise da suscetibilidade a deslizamentos no bairro Saco Grande, Florianópolis-S*". **Revista Universidade Rural, Série Ciências Exatas e da Terra**, v.21, n.1, p.91-104,2002.

FROELICH, D. C. Long-Duration–Rainfall Intensity Equations. Journal of Irrigation and Drainage Engineering, v. 121, n.3, p.248-252, 1995.

GOTARDO, R.; PIAZZA, G.A.; TORRES, E.; SEVERO, D.L.; KAUFAMANN, V. Distribuição espacial e temporal das chuvas no estado de Santa Catarina. **Geosu**l, v.33, n.67, p.253-276, 2018. DOI: https://doi.org/10.5007/2177-5230.2018v33n67p253

GREEN, J.; JOHNSON, F.; BEESLEY, C.; THE, C. **Design Rainfall.** In: Ball J, M Babister, R Natha, W Weeks, E Weinmann, M Retallick and I Testonis (eds) *Australian Rainfall and Runoff: A Guide to Flood Estimation*. Commonwealth of Australia, Australia, 2016

JOHNSON, K. A.; SMITHERS, J. C. Methods for the estimation of extreme rainfall events. **Water SA**, v. 45, n. 3, p.501-512, 2019. <u>https://doi.org/10.17159/wsa/2019.v45.i3.6747</u>

LIMA NETO, V. S.; TAVARES, P. R. L.; BATISTA, T. L. Ajuste e Validação de Equações IDF a Partir de Dados Pluviométricos para Cidades do Estado de Pernambuco, Brasil. **Revista Brasileira de Meteorologia**, v. 36, n. 4, 713 721, 2021 DOI: http://dx.doi.org/10.1590/0102-778636003

MAMUN, A. A.; SALLEH, M. N.; NOOR, H. M. Estimation of short-duration rainfall intensity from daily rainfall values in Klang Valley, Malaysia. **Applied Water Science**, v.8, n.203, 2018. <u>https://doi.org/10.1007/s13201-018-0854-z</u>

MIRHOSSEINI, G.; SRIVASTAVA, P.; STEFANOVA, L. The impact of climate change on rainfall intensity-duration-frequency (IDF) curves in Alabama. **Regional Environment Change**, v.13, p.25-33, 2012 doi:10.1007s10113-012-0375-5.





MORIASI, D.N.; ARNOLD, J.G.; VAN LIEW, M.W.; BINGNER, R.L.; HARMEL, R.D.; VEITH, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. **Transactions of the ASABE**, v.50, n.3, p. 885-900, 2007.

MOURI. G.; MINOSHIMA. D.; GOLOSOV, V.; CHALOV, S.; SETO, S.; YOSHIMURA, K.; NAKAMURA, S.; OKI, T. Probability assessment of flood and sediment disasters in Japan using the Total Runoff-Integrating Pathways model. **International Journal of Disaster Risk Reduction**, v.3, p.31-43, 2013.

NAMITHA, M. R.; VINOTHKUMAR, V. Development of empirical models from rainfallintensity-duration-frequency curves for consecutive Days maximum rainfall using GEV distribution. **Journal of Pharmacognosy and Phytochemistry**, v. 8, n. 1, p. 2705-2709, 2019.

NASH, J. E.; SUTCLIFFE, J. V. River flow forecasting through conceptual models, Part I - A discussion of principles. Journal of Hydrology, v. 10, n. 3, p. 282-290, 1970.

NG, C. W. W.; SHI, Q. A numerical investigation of the Stability of unsaturated soli slopes subjected to transient seepage. **Computers and Geotechnics**, v. 22, n. 1, p. 1-28, 1998.

OLIVEIRA, L. F. C. de; CORTÊS, F. C.; WEHR, T. R.; BORGES, L. B.; SARMENTO, P. H. L.; GRIEBELER, N Intensidade-Duração-Frequência de chuvas intensas para localidades no estado de Goiás e Distrito Federal. **Pesquisa Agropecuária Tropical**, v. 35, n. 1, p. 13–18, 2005.

SANTOS, G. G.; FIGUEIREDO, C. C. de; OLIVEIRA, L. F. C.; GRIEBELER, N. Intensidade-duraçãofrequência de chuvas para o Estado de Mato Grosso do Sul. **Revista Brasileira de Engenharia Agrícola e Ambiental**, [s. l.], v. 13, p. 899–905, 2009. https://doi.org/10.1590/S1415-43662009000700012

SHERMAN, C. W. Frequency and intensity of excessive rainfall at Boston. **Transactions of the American Society of Civil Engineering**, v. 95, p. 951–960, 1931.

SILVA, B. M.; MONTENEGRO, S. M. G. L.; SILVA, F. B. da; ARAÚJO FILHO, P. F. Chuvas intensas em localidades do estado de Pernambuco. **Revista Brasileira de Recursos Hídricos**, v. 17, n. 3, p. 135-147, 2012.

SILVA, J. B. L.; CÂNDIDO, F. A.; PIRES, L. C.; FRANÇA, L. C. de J. Nota Técnica: Equações de Intensidade, Duração e Frequência de chuvas máximas para o estado do Rio Grande do Norte, Brasil. **Revista Engenharia Na Agricultura**, v. *26, n.* 2, p. 160–170. 2018 https://doi.org/10.13083/reveng.v26i2.885

SMITHERS, J.C.; SCHULZE, R.E. Long duration design rainfall estimates for South Africa. WRC Report No. 811/1/00. Water Research Commission, Pretoria, 2000.

SOARES, F. L.; RAMOS FILHO, G. M. Correlação entre movimentos de massa e pluviosidade nas encostas de João Pessoa/PB. **Revista Geotecnia**, n. 133, p.59, 2015.

SOUZA, R. O. R. M.; SCARAMUSSA, P. H. M.; AMARAL. M. A. C. M.; NETO, J. A. P.; PANTOJA, A. V.; SADECK, L. W. R. Equações de chuvas intensas para o Estado do Pará. **Engenharia Agrícola e Ambiental**, v.16, n.9, p.999–1005, 2012.





STABILE, R. A.; COLÂNGELO, A. C. **Estudo pluviométrico dos escorregamentos deflagrados no verão de 2009/2010 no Planalto Do Paraitinga (SP)** In: Simpósio Brasileiro de Geografia Física Aplicada. Campinas, 2017. DOI - 10.20396/sbgfa.v1i2017.2532.

SUDA, Y. Meanings of constants in rainfall depth-duration formulas and relations between the constants. **Journal of Japan Society of Hydrology and Water Resources**, v.31, n.3, p.166-177, 2018.

SUN, Y.; WENDI, D.; KIM, D. E.; LIONG, S.-Y. Deriving intensity-duration-frequency (IDF) curves using downscaled in situ rainfall assimilated with remote sensing data. **Geoscience Letters**, v. 6, n. 17, p. 1-12, 2019. https://doi.org/10.1186/s40562-019-0147-x

VALVERDE, M. V.; CARDOSO, A. O.; BRAMBILA, R. O Padrão de chuvas na região do ABC Paulista: Os extremos e seus impactos. **Revista Brasileira de Climatologia**, v.22, p.165-187,2018.

VIEIRA, R.; PINHEIRO, A.; XAVIER, F. F. VIBRANS, A. C.; REFOSCO, J. C. Análise Integrada dos fatores físicos e sociais para identificação das áreas suscetíveis a escorregamentos. In: Um olhar sobre as áreas de risco de escorregamentos no município de Blumenau: em busca da prevenção. FURB/IPA, p. 56-71, 2005.

XUE, K.; AJMERFA, B.; TIWARI, B.; HU,Y. Effect of long duration rainstorm on stability of Redclay slopes. **Geoenvironmental Disasters, v.** 3, n.12, 2016. DOI 10.1186/s40677-016-0046-9

YAMOAT, N.; HANCHOOWONG, R.; SRIBOONLUE, S.; KANGRANG, A. Temporal change of extreme precipitation intensity-duration-frequency relationships in Thailand. Journal of Water and Climate Change, v. 13, n. 2, p. 839-853, 2022. doi: 10.2166/wcc.2021.348