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Abstract: In this article the availability and quality of public databases for soybean yields and daily 
rainfall in the state of Paraná in Brazil is assessed in order to verify the feasibility of an index insurance 
product. The multiple imputation by chained equations (MICE) method is utilized to fill missing values 
in the rainfall dataset and study the existence of spatial and temporal patterns in the data by means 
of hierarchical clustering. The results indicate that Paraná fulfills data requirements for a scalable 
weather index insurance with MICE and hierarchical clustering being effective tools in the pre-
processing of precipitation data. 
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Resumo: Neste artigo é avaliada a disponibilidade e a qualidade de bancos de dados públicos sobre a 
produção de soja e a precipitação diária no estado do Paraná no Brasil a fim de verificar a viabilidade 
de um produto de seguro de índice climático. O método de imputação múltipla por equações 
encadeadas (MICE) é utilizado para preencher valores ausentes no conjunto de dados de precipitação 
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e estudar a existência de padrões espaciais e temporais nos dados por meio de agrupamento 
hierárquico. Os resultados indicam que o Paraná cumpre os requisitos de dados para um seguro de 
índice climático escalável, com o MICE e o agrupamento hierárquico sendo ferramentas eficazes no 
pré-processamento dos dados de precipitação. 

Palavras-chave: Seguro paramétrico. Agrupamento hierárquico. MICE. 

 

Resumen: En este artículo, se evalúa la disponibilidad y la calidad de las bases de datos públicas para 
los rendimientos de la soja y las precipitaciones diarias en el estado de Paraná en Brasil con el fin de 
verificar la viabilidad de un producto de seguro paramétrico. El método de imputación múltiple por 
ecuaciones encadenadas (MICE) se utiliza para completar los valores faltantes en el conjunto de datos 
de lluvia y estudiar la existencia de patrones espaciales y temporales en los datos mediante agrupación 
jerárquica. Los resultados indican que Paraná cumple con los requisitos de datos para un seguro de 
índice meteorológico escalable con MICE y la agrupación jerárquica como herramientas efectivas en el 
procesamiento previo de datos de precipitación. 

Palabras-clave: índice-seguro. Agrupación jerárquica. MICE. 
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INTRODUCTION 

One of the flagships in the recent agricultural policy in Brazil, crop insurance has been 

advertised as one of the pillars of the 2016/2017 and 2017/2018 Agricultural and Livestock 

Plan (MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO, 2016; MINISTÉRIO DA 

AGRICULTURA, PECUÁRIA E ABASTECIMENTO, 2017). However, since its development in 

Brazil, this type of insurance has not achieved its intended endings with the protected area 

under 10% of the agricultural land (OZAKI, 2013). The low uptake is credited to the 

government insufficient investments in subsidies for the crop insurance program, however as 

noted by Oñate et al. (2016) one of the most subsidized crop insurance programs in Brazil, 

Proagro Mais, has failed to reduce uncertainty and risks. Also, as historic yields are not always 

available, insurers tend to use data provided by the Brazilian Institute of Geography and 

Statistics (IBGE), which are aggregated at the municipality level, thus pushing away high yield 

farmers and attracting the ones with low yields (when compared to the municipality average 

yield). 

Relying on subsidies to increase crop insurance uptake seems not to be a good 

alternative as tax payers’ and several countries’ perception of farm subsidies worsens 

(Edwards, 2018). The benefits of this type of subsidy have shown to favor only the ones 

receiving it and not the entire community (DRABENSTOTT, 2015; BABCOCK, 2015; KIRWAN & 

ROBERTS, 2016). Therefore, subsidy free alternatives should be sought in order to improve 

the financial security of farmers. 

This does not mean the government should end all crop insurance programs, but 

improve their self-sustainability. In this sense, one promising product is parametric insurance, 

which has lower premium costs when compared to traditional insurance. The absence of in 

situ claim adjustment and moral hazard monitoring greatly reduces the administrative costs 

of this type of insurance, permitting a subsidy free crop insurance (JENSEN & BARRETT, 2017). 

Another advantage of index insurance products is the rapid and payment of indemnities, also 

due to the non-existence of local loss assessment.  

The basis of index insurance development is systemic risk, one of the factors halting 

conventional crop insurance expansion. The correlation of losses among policyholders causes 

significant increase in the indemnities, renting conventional crop insurance infeasible in the 

long run. Given that crops are exposed to a series of widespread risks, such as drought, floods 
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and windstorms it is clear that traditional crop insurance will not provide the adequate 

protection. 

One of the key aspects of parametric insurance design is data, especially of high quality 

and from a sustained source. In the context of index insurance, high quality means a long, 

consistent and unbiased historical record. However, as noted in Collier et al. (2010) the data 

needs for a weather index insurance (WII) depends on the characteristics of the weather event 

insured.  

Opposed to the traditional lines of insurance, parametric insurance relies on the spatial 

correlation of risks (systemic risks), so one of the first steps when designing this type of 

insurance is to determine the area affected by the event as this will indicate the necessary 

spatial resolution (RAO, 2011). Each event presents a spatial behavior, so the topography of 

the target region must be carefully studied, as a rough terrain alters weather patterns.  

Aside from spatial correlation, temporal correlation is also important as weather 

events tend to follow a pattern in time. Such phenomena are observed in South America with 

the occurrence of El Niño and La Niña (ENSO), or in Asia with the monsoons. Data must have 

the proper temporal resolution to capture these seasonal patterns. 

Just as important as historical weather data are historical records of loss and their 

cause, which will provide information of the impacts of different levels of the weather risk 

thus enabling the determination of an index trigger. Ideally, when developing a WII, one 

should be able to estimate the probability distribution function and correlations (presumably 

high) of each of these variables. A general benchmark for the minimum length of climatic data 

is 30 years (COLLIER ET AL., 2010). 

In Brazil, parametric insurance was introduced in 2017 by Swiss Re for a single large 

producer of corn, cotton and soybean in the states of Bahia, Mato Grosso and Minas Gerais. 

However, the literature in the subject is still inexistent, even the Brazilian literature in crop 

insurance is also fragile. This is due, in part, to the data scarcity which was mitigated in 2016 

by the release of a Crop Insurance Atlas by the Brazilian Ministry of Agriculture, Livestock and 

Supply. Therefore, the objective of this work is to assess if the state of Paraná is suitable for 

this type of product, regarding the data requirements and the existence of yield and rainfall 

spatial patterns.  The chosen crop is soybean, given that Paraná is the second largest producer 

in Brazil with a total of 19,073,706 tons produced in 2017, being also the second in average 
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yields (3,663 kg/ha in 2017) according to the Brazilian Institute of Geography and Statistics 

(IBGE, 2019).  

 

MATERIALS AND METHODS 

Daily precipitation data in Brazil are available from the National Water Agency (ANA) 

Hydrometeorological Network (MINISTÉRIO DO DESENVOLVIMENTO REGIONAL, 2005) and 

the National Institute of Meteorology (INMET), being that the former presents a more 

comprehensive distribution of weather stations from several sources in the state of Paraná. 

Therefore, only precipitation data from the National Hydrometeorological Network (RHN) was 

collected, spanning from 01/06/1973 through 31/12/2015 for a total of 1163 weather 

stations. This series was later aggregated in monthly totals.  

Also, the series of annual soybean yields (in kg ha-1) for each of the 399 municipalities 

in the state of Paraná, from 1980 through 2016, were obtained from the National Institute of 

Geography and Statistics (IBGE, 2019).  

 

Data cleaning and yield detrending 

From the initial set of 1163 weather stations and 399 municipalities the ones with 15% 

or less of missing data were filtered, resulting in 78 stations and 174 municipalities. Values of 

precipitation were capped at 150mm to account for operational errors in the weather 

stations. Observing the spatial distribution of weather stations with less than 15% of missing 

data with a 15km halo there is an indication that a micro scale index insurance is not 

recommended (Figure 1). However, when a 50km halo is added there is only a portion of the 

state without coverage, mainly around the city of Londrina (Figure 2). This indicates an 

aptitude for parametric insurance at the meso and/or macro scales, targeted to cooperatives 

and other larger risk aggregators (COLLIER, 2010). At larger scales, weather index insurance 

permits the identification of large events and decreases the impact of basis risk. 

Microinsurance is possible for the municipalities with a weather station (78) and surrounding 

locations up to 15 km, however this greatly reduces the scalability of WII in Paraná. 
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Figure 1 - Weather stations spatial distribution (with a 15 km halo) 

 
Source: Elaborated by the authors (2020) 

 
Figure 2 - Weather stations spatial distribution (with a 50 km halo) 

 
Source: Elaborated by the authors (2020) 
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The yield data coverage is more disperse with some gaps, especially in the northwest 

and east portion of the state (Figure 3). In the northwest this lack of data reflects the 

characteristics of the region, with sandy soils and warm climate, being thus restrictive to the 

growth of soybean. Another reason for the low presence of soybean is the predominance of 

ranching in this region. This author also notes that in the east the presence of soybean is 

limited. Nevertheless, the available data represents the bulk of soybean producers in the state 

with approximately 70% of the state total production in 2016 (IBGE, 2019). 

 

Figure 3 - Yield data spatial distribution. 

 
Source: Elaborated by the authors (2020) 

 

Crop yield data are subject to changes in practices and technology, which are not of 

interest for this study, therefore the yields were detrended. A linear regression was adjusted 

to the yield data with time as the explanatory variable, then the last observed yield was 

corrected using the model residuals for each year (GALLAGHER, 1987; DUARTE ET AL., 2018). 

The detrended yields are defined by the following equation: 
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𝑦𝑡̃ = 𝑦2016̂ (1 +
𝑒𝑡̂

𝑦𝑡̂
) 

where 𝑦𝑡̃, 𝑦𝑡̂ 𝑎𝑛𝑑 𝑒𝑡̂ are, respectively, the corrected yield, the fitted yield and the 

residual for year 𝑡, 𝑦2016̂ is the fitted yield for 2016. 

This initial filtering is based on the five characteristics required in order to obtain a 

suitable dataset for weather index insurance design (COLLIER, 2010). The first is historical 

length, general standard of 30 years of data, permitting a better estimation of the probability 

distributions of derived indexes. The second is spatial specificity, which is dependent on the 

type of index insurance product to be designed. Farm-level products require at least one 

weather station each 15km, while meso and macro level products will perform adequately 

with one weather station each 50-100km. The third characteristic is temporal specificity, 

regarding the availability of data on a timely basis. For the purpose of drought monitoring, the 

daily precipitation from ANA will be sufficient. The fourth characteristic is completeness, 

which is why weather stations with more than 15% of missing data was removed from the 

dataset and Multiple Imputation by Chained Equations (MICE) is employed to fill the missing 

gaps on the data. The last characteristic is validity, giving both the insurer and the client 

confidence that the data comes from a source that cannot be tampered by any of the involved 

parties. This is why only data from public institutions were considered in this work.  

 

Imputation for precipitation data 

Given the existence of missing data Multiple Imputation by Chained Equations (MICE) 

was applied, a method that combines imputation for multivariate data (RUBIN, 1988) and Fully 

Conditional Specification, which was developed under several names, being chained 

equations the one implemented here using the R software (VAN BUUREN, 2011). 

While multiple imputation considers a single imputation model for each variable with 

missing values, the chained equations technique permits the use of separate and univariate 

imputation models for each of these variables (BARTLETT ET AL., 2015). In this way, hundreds 

of variables may be imputed with a high degree of flexibility (HE ET AL., 2010). Continuous 

variables may be modeled through linear regression and binary variables through logistic 

regression for example (CHEVRET ET AL., 2015). However, MICE does not have the same 
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theoretical basis as other methods such as multivariate normal imputation, what does not 

seem to be an issue (WHITE ET AL., 2011).  

A natural question when using imputation methods is whether the missing rate may 

be too high to use multiple imputation methods such as MICE. Research shows that these 

methodologies are unbiased when data is missing at no higher than 50%, being unstable for 

higher percentages, especially if the data distribution is asymmetrical (LEE & CARLIN 2012; 

HAJI-MAGHSOUDI ET AL., 2013). However, this does not imply that multiple imputation should 

be discarded as it exhibits superior performance to other methods even for a 75% data loss, 

despite biased estimates (MARSHALL ET AL., 2010).  

For a partially observed random sample of the multivariate distribution P(Y|θ), 

completely specified by the vector of 𝑘 unknown parameters θ and representing the complete 

data 𝑌, the posterior distribution of θ and then the predictive distribution of 𝑌 are obtained 

through a Gibbs sampler of the form: 

θ1
⋆(𝑡)

~P(θ1|𝑌1
(𝑜𝑏𝑠)

, 𝑌2
(𝑡−1)

, … , 𝑌𝑘
(𝑡−1)

) 

𝑌1
⋆(𝑡)

~𝑃(𝑌1|𝑌1
(𝑜𝑏𝑠)

, 𝑌2
(𝑡−1)

, … , 𝑌𝑘
(𝑡−1)

, θ1
⋆(𝑡)

) 

⋮ 

θ𝑘
⋆(𝑡)

~P(θ𝑘|𝑌𝑘
(𝑜𝑏𝑠)

, 𝑌1
(𝑡−1)

, … , 𝑌𝑘−1
(𝑡−1)

) 

𝑌𝑘
⋆(𝑡)

~𝑃(𝑌𝑘|𝑌𝑘
(𝑜𝑏𝑠)

, 𝑌1
(𝑡−1)

, … , 𝑌𝑘−1
(𝑡−1)

, θ𝑘
⋆(𝑡)

) 

 

where 𝑌𝑗
𝑡 = (𝑌𝑗

(𝑜𝑏𝑠)
, 𝑌𝑗

∗(𝑡)
) is the 𝑗th imputed variable at iteration 𝑡 and 𝑌(𝑜𝑏𝑠) is the portion 

of 𝑌 that is observed. 

 

The predictive mean matching (PMM) imputation method was chosen within MICE 

given that precipitation is generally skewed, thus not normally distributed. Nevertheless, 

simulations have shown that normal imputation models do work with non-normal data 

(GRAHAM & SCHAFER, 1999). Imputations made through PMM better resemble the observed 

values than methods based on the normal distribution (WHITE ET AL., 2011). This follows from 

the way PMM work as it uses the predicted value for a given missing value to identify similar 

observations. These identified observations are used to create a matching set is containing q 

matches, from which PMM then draws a random observation. Therefore, PMM uses the real 
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observed values to fill the missing data and thus preventing extrapolation beyond the range 

of the data (LITTLE, 1988). 

In order to capture seasonal changes, latitude, longitude, and month and year binaries 

were chosen as covariates. With this specification, the MICE procedure assumes 𝑌 being 

normally distributed1 and estimates a linear multiple regression. This yields a 𝛃̂ vector of 

parameters (of length k), with an estimated covariance matrix 𝑽 and root mean-squared error 

σ̂, from fitting this model to 𝑌(𝑜𝑏𝑠).  

The next step is to draw the imputation parameters σ⋆, 𝛃⋆ from the exact joint 

posterior distribution of σ, 𝛃. The parameter σ⋆is drawn as σ⋆ = σ̂√(𝑛obs − 𝑘)/𝑔, where 𝑛𝑜𝑏𝑠 

if the number of observed values, g is a random draw from a χ2 distribution with 𝑛𝑜𝑏𝑠 − 𝑘 

degrees of freedom. Then, 𝛃⋆ is drawn as 𝛃⋆ = 𝛃̂ +
σ⋆

σ̂
𝒖1𝐕1/2, where 𝒖1 is a vector of k 

independent random draws from a standard Normal distribution and 𝐕1/2 is the Cholesky 

decomposition of V. 

For each missing value 𝑌𝑖 with covariates 𝑿𝑖  PMM identifies the q individuals with the 

smallest values of |𝛃̂𝑿𝑜 − 𝛃⋆𝑿𝑖| (𝑜 = 1, . . . , 𝑛𝑜𝑏𝑠). Of these q closest individuals, one is chosen 

at random (𝑌ℎ’), and the imputed value of 𝑌𝑖 is 𝑌ℎ’. Thus, the imputed value is an observed 

value of Y whose prediction is closely matched by the perturbed prediction. 

The size of the matching set is chosen by the researcher with values like 𝑞 = 1 in 

leading to estimated standard errors that are too low and t-statistics that are too large 

(MORRIS ET AL., 2014). Whereas values ranging from 𝑞 = 3 over 𝑞 = 10 showed a small 

advantage (SCHENKER & TAYLOR, 1996; MORRIS ET AL., 2014). The size of the matching set is 

dependent on sample size and may have poor performance in small samples as the difference 

between similar observations is increased. 

PMM has shown similar performance to correctly specified parametric models and 

better than poorly specified ones characterized by non-normality (SCHENKER & TAYLOR 1996, 

MORRIS ET AL., 2014) and skewness (MARSHALL ET AL., 2010) considering that the method 

does not have a strong theoretical backing (KENWARD & CARPENTER, 2007). 

                                                           
1 This assumption does not affect the quality of the imputations as this regression is simply a metric for matching 
(Little, 1988).  
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Finally, for this analysis the number of repeated imputations was m=5, q=5 and the 

number of iterations was t=20. The quality of the imputations was checked using the 

Kolmogorov-Smirnov test in order to check departures from the original distribution of data 

(BONDARENKO & RAGHUNATHAN, 2016). 

The application of MICE has been successful in several areas, including precipitation 

data imputation in Brazil by de Carvalho et al (2017).  

 

Clustering procedures 

Prior to the application of hierarchical clustering, precipitation data was aggregated monthly 

and the standardized precipitation index (SPI) with a three-month scale was calculated, thus 

capturing drought events during the crop season (ZARCH ET AL, 2015). We chose the Ward’s 

clustering method with an Euclidean distance matrix since it has already proved successful in 

defining homogenous precipitation regions in Brazil (KELLER FILHO, 2005). The optimal 

number of clusters was obtained through the majority rule of 30 indices, an algorithm 

implemented in Charrad et al. (2014). 

 

RESULTS AND DISCUSSION 

Imputations 

According to the Kolmogorov-Smirnov test the distribution of the imputed precipitation does 

not differ from the original dataset (D = 0.005964, p-value = 0.1016), therefore the procedure 

did not alter the underlying structure of the data. This result reinforces the use of MICE as a 

valid imputation procedure for precipitation data in Brazil (DE CARVALHO ET AL., 2017). It 

must be noted that albeit its effectiveness, MICE should be used with caution in datasets with 

50% or more of missing values. Also, the specification of the correct imputation model and 

quality of predictors plays a large role in the quality of the imputations (WHITE ET AL, 2011). 

a. Precipitation clusters 

According to the majority rule, the optimal number of clusters was two, with nine votes, 

followed by three clusters with six votes (Table 1). Given that it is used a different approach 

to the clustering methodology than in Keller Filho et al (2005), where several statistical 
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parameters are calculated from five-day accumulated precipitation, and here the three-month 

SPI is used, the results do not completely match but are very similar regarding the 

characteristics of the clusters. Cluster 1 represents areas in the west, center and north of the 

state, with higher total precipitation in the year aggregate but greater variability among years. 

Whereas cluster 2 represents the center and east of Paraná, with a lower total precipitation 

but with less variability (Figure 4). 

 

Figure 4 - Precipitation clusters spatial distribution 

 
Source: Elaborated by the authors (2020) 

 

Ideal number of clusters for each variable 

Regarding the SPI values for each month and cluster, it is interesting to observe that there is 

little difference in the median of monthly SPI, albeit statistically significant according to the 

cluster analysis (Figure 5). When carefully analyzed, it can be observed that cluster 1 has a 

greater number of observations in the lower ranges of SPI, indicating the occurrence of 

moderate and severe droughts. This can be explained by the greater variability in 
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precipitation, and the occurrence of droughts in the north and northeast of the state as 

identified by Fritzsons et al. (2011).  

 

Figure 5 - Monthly SPI boxplot, per cluster. 

 
Source: Elaborated by the authors (2020) 

 

When analyzing only the period in which soybeans are grown in the state, October 

through March, cluster 1 presents variable conditions, as there is a surplus in precipitation 

during the growth and reproductive stages with a decrease in precipitation in the end of the 

growth period (Figure 6). However, there must be caution with the occasional occurrence of 

drought, which can be mitigated using irrigation or risk management products such as crop 

insurance. Despite the decrease in precipitation from January through April/May, the total 

precipitation in this period is sufficient for cultivars ranging from 450 to 700 mm of water 

requirements. 

For Cluster 2, the opposite is observed with lower levels of precipitation from October 

through December and higher levels in January and February. However, in these areas, there 

is a steeper descent in precipitation levels, being the region adequate for cultivars requiring 

from 450 to 650 mm of water. It must be noted that areas represented in cluster 2 have a 

lower variability, thus, it suffers less from drought and excessive rain periods (Figures 6 and 

7). 
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Figure 6 - Monthly precipitation (total) boxplot, per cluster. 

 
Source: Elaborated by the authors (2020) 

 

Yield clusters 

According to the majority rule, the optimal number of clusters was two, with eleven 

votes, followed by three clusters with eight votes (Table 1). Similarly to the precipitation 

clusters, cluster 1 represents the west and northwest of the state while cluster 2 comprehends 

the south, center and east of Paraná (Figure 7). Thus, the only difference from the rainfall 

clusters is that the yield cluster 1 has less presence in the center and south of Paraná. 
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Figure 7 - Yield clusters spatial distribution. 

 
Source: Elaborated by the authors (2020) 

 

Table 1 - Ideal number of clusters for each variable 

 Variable 
Ideal number of clusters* 

0 1 2 3 5 6 7 8 10 

Votes 
Rainfall 2 1 9 6 0 1 1 2 1 

Yield 2 0 11 8 2 0 0 1 2 

*Only numbers with at least one vote are presented 

Source: Elaborated by the authors (2020) 

 

Both clusters present a similar yield level from the beginning of the series through 1990 

and from 2001 onwards, however, in the period comprised between 1991 and 2000 cluster 1 

has lower yields (Figure 8). Also, in years where losses occurred (1986, 1991, 1992, 2005, 2009, 

2012), cluster 1 municipalities suffered greater losses, increasing cluster variability and 

decreasing the mean and median of the whole period (Table 2). The latter can be explained 

by the presence of municipalities in the northern portion of the state in cluster 1, as said in 

the previous section this region has sandy soils and higher temperatures, being more 
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susceptible to drought. Other researchers such as Felema et al. (2016) also study the spatial 

behavior of soybean yields in Paraná. However, while the results from this paper agree to 

some measure, no comparisons are made as both studies used only two years of data against 

the 37-year time series of the present study. 

 

Figure 8 - Soybean yields time series with 95% confidence intervals, per cluster. 

 
Source: Elaborated by the authors (2020) 

 

Table 2 - Yield clusters descriptive statistics. 

Cluster Mean Median 
Standard 
deviation 

Coefficient of 
variation (%) 

1 2993,46 3051,21 597,05 19,95 

2 3209,30 3282,11 533,26 16,62 

Source: Elaborated by the authors (2020) 

 

Yield and precipitation clusters relationship 

When comparing with the results found for the precipitation clusters, the need to 

consider other environmental variables is exemplified. Regardless of the precipitation cluster 

2 having lower precipitation levels, other factors such as soil type and temperature lead to 

greater yields in this region. The southwest of Paraná is the only region with high precipitation 



 

 

 Revista Brasileira de Climatologia, Dourados, MS, v. 29, Jul. / Dez. 2021, ISSN 2237-8642 

 

94 

and high yields. Intersecting the clusters would lead to a further separation, with three 

separate regions, the southeast with lower precipitation levels and high yields, the west and 

center with good precipitation levels (but with higher variability) and lower yields and the 

southwest as described above. These “new clusters” could present separate regions for the 

design of a weather index insurance products, with each region having a fine-tuned product. 

This analysis does not encompass soil and other weather variables, which are also 

important in the determination of the suitability of cultivars for each region. The northwest of 

Paraná presents sandy soils and higher temperatures, therefore, farms in this region suffer 

more from drought periods as these soils have a lower water holding capacity and the increase 

in temperature leads to a higher evapotranspiration. On the contrary, for the south portion of 

the state, soils are rich in clay, altitudes are higher and temperatures lower, this coupled with 

a low variability in precipitation results in a lower risk of drought related yield losses (LIMA ET 

AL., 2012). Consequently, when choosing adequate risk management strategies and in the 

design of crop insurance products, such as weather index insurance, these variables must be 

taken in account. 

 

CONCLUSION 

Verifying the availability and quality of data sources is one of the first steps when 

designing a weather index insurance product. This step is particularly difficult in large 

developing countries such as Brazil, where the weather agencies do not have the necessary 

funds to maintain a large net of weather stations. Given this lack of resources, the existing 

stations also suffer from missing data, a problem that generally implies in pricier insurance. In 

this paper the quality of precipitation and yield data in Paraná-Brazil is evaluated and a proven 

method to deal with missing data is presented.  

Despite the variability of soil and temperature conditions it is found that the state of 

Paraná presents a great opportunity for index insurance based on precipitation data. There is 

a good coverage of suitable weather stations and the clusters found indicate the scalability of 

WII and the existence of spatially correlated weather events. The sharp decrease in weather 

stations from the original set to the filtered one is due to the lack of historical data in many of 

the stations, as the number of operational stations is around 900, thus the weather station 

coverage should improve with time.  
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It is found that MICE proved a reliable method to fill gaps in precipitation data with up 

to 15% of missing observations, therefore it should be considered by insurers as an alternative 

to the practice of loading insurance premium in cases where data is not complete. This would 

provide a more attractive product without losing precision in the pure risk estimates as the 

method does not change the probability distribution of data. 

This article presents a beginning of the exploration of weather index insurance design 

in the Brazilian literature, as the economic viability of index insurance was not verified, 

focusing only in the technical aspects required for its operation. Thus, additional studies are 

required to determine if WII is a viable option to the crop insurance market in Paraná and how 

it compares to existing crop insurance products. 
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