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ABSTRACT: The application of remote sensing has provided an opportunity to improve 
the estimation of gross primary production (GPP) on a regional scale. Several models to 
estimate GPP of homogeneous ecosystems, such as agricultural areas, entirely based on 
remote sensing data exist, but models to describe more heterogeneous areas are less 
common. Thus, the aim of the study was to evaluate the GPP estimated by different 

remote sensing methods in an Amazon-Cerrado transition forest in Mato Grosso, using 
MODIS spectral data. Two models, known as the temperature and greenness model (TG) 
and the vegetation index (VI) model, were used to estimate seasonal and interannual 
variations in GPP from June 2005 to May 2008. Our results indicated that the TG and VI 
models were incapable of reproducing the seasonal variation in GPP, because the lack of 
correlation between vegetation indices and the GPP measured from tower-based eddy 

covariance (GPPEC). Furthermore, the time series of the enhanced vegetation index (EVI) 
was delayed by 2 months with GPPEC. The results presented in this paper highlight some 
of the complexities in validating satellite products. Further study over a variety of 
Brazilian forests is needed to quantitatively assess the TG and VI and other methods to 
improve their accuracy. 

Keywords: net CO2 exchange, transitional tropical forest, light use efficiency, MODIS. 

MODELAGEM DA PRODUÇÃO PRIMÁRIA BRUTA DE FLORESTA TROPICAL POR 

SENSORIAMENTO REMOTO 

RESUMO: A aplicação do sensoriamento remoto tem possibilitado a oportunidade para 
melhorar a estimativa da produção primária bruta (GPP) em escala regional. Existem 
vários modelos para estimar GPP de ecossistemas homogêneos, tais como áreas 
agrícolas, inteiramente baseados em dados de sensoriamento remoto, mas modelos para 
descrever áreas heterogêneas são menos comuns. Dessa forma, o objetivo do estudo foi 
avaliar a GPP estimada por diferentes métodos de sensoriamento remoto em uma 

floresta de transição do Amazonas-Cerrado em Mato Grosso, utilizando-se os dados 
espectrais do sensor MODIS. Para estimar as variações sazonais e interanuais do GPP 
foram utilizados dois modelos, conhecidos como modelo de temperatura e verde (TG) e o 
índice de vegetação (VI) entre junho de 2005 e maio de 2008. Os resultados indicaram 
que os modelos TG e VI não conseguiram reproduzir a variação sazonal do GPP, devido à 
falta de correlação entre os índices de vegetação e o GPP medido pelo método de 

correlações de vórtices turbulentos (GPPEC). Além disso, a série temporal do índice de 
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vegetação melhorado (EVI) foi atrasada em 2 meses em relação ao GPPEC. Os resultados 
apresentados neste artigo destacam algumas das complexidades na validação de 

produtos de satélite. Futuros estudos sobre várias florestas brasileiras são necessários 
para avaliar os modelos TG e VI e outros para melhorar sua precisão. 

PALAVRAS-CHAVES: troca líquida de CO2, floresta tropical de transição, eficiência do 
uso leve, MODIS. 

MODÉLISATION DE LA PRODUCTION PRIMAIRE BRUTE DE FORÊT TROPICALE PAR 
TÉLÉDÉTECTION 

RESUME: L'application de la télédétection a permis d'améliorer l'estimation de la 

production primaire brute (GPP) à l'échelle régionale. Plusieurs modèles d'estimation des 
GPP d'écosystèmes homogènes, comme les zones agricoles, sont entièrement basés sur 
des données de télédétection, mais les modèles pour décrire des zones plus hétérogènes 

sont moins fréquents. Le but de l'étude était donc d'évaluer le GPP estimé par différentes 
méthodes de télédétection dans une forêt de transition de l'Amazonie-Cerrado au Mato 
Grosso, en utilisant les données spectrales MODIS. Deux modèles, connus sous le nom 
de modèle de température et de verdure (TG) et le modèle de l'indice de végétation (VI), 

ont été utilisés pour estimer les variations saisonnières et interannuelles des GPP entre 
juin 2005 et mai 2008. Nos résultats indiquent que les modèles TG et VI n'ont pas été en 
mesure de reproduire la variation saisonnière des GPP, en raison de l'absence de 
corrélation entre les indices de végétation et les GPP mesurés à partir de la covariance 
par tourbillons en tour (GPPEC). De plus, la série chronologique de l'indice de végétation 
amélioré (EVI) a été retardée de 2 mois avec GPPEC. Les résultats présentés dans ce 

document mettent en évidence certaines des complexités de la validation des produits 
satellites. Des études complémentaires sur une variété de forêts brésiliennes sont 
nécessaires pour évaluer quantitativement TG et VI et d'autres méthodes pour améliorer 
leur précision.. 

MOTS CLÉS: échange net de CO2, forêt tropicale de transition, utilisation légère, MODIS 

 

1. INTRODUCTION 

Tropical forests have received special attention in recent years due to its 

high biodiversity and terrestrial carbon (C) stocks (SAATCHI et al., 2011). 

Tropical rainforests sequester more carbon than any other biome or land cover 

class (AHLSTRÖM et al., 2015). However, rainforests have also been changed 

due to deforestation and human activity, which is altering the carbon cycle and 

microclimate of the region (VOURLITIS et al., 2011; BIUDES et al., 2014a). 

These changes modify the rate of carbon converted to biomass through 

photosynthesis, which on a canopy scale can be estimated as gross primary 

production (GPP) (XIAO et al., 2004). 

Despite the importance of studying the carbon cycle, there is a 

discrepancy in the estimates of GPP from different ecosystems and from 

different models, which impairs the understanding of the global estimate of 

carbon exchanged between the surface and the atmosphere (WU et al., 2011). 

Ecosystem C exchange is now routinely performed by tower-based eddy 

covariance (EC), but these measurements only represent one point on the 

Earth’s surface. Thus, the estimation of GPP over regional and global scales 

using point measurements from EC is a complex task due to the large spatial 

variability of terrestrial ecosystems (SOUZA et al., 2014). 

The application of remote sensing provides an opportunity to improve the 

estimation of GPP on a regional scale (SILVA et al., 2013), particularly in regions 

where there is no meteorological data. Many of these remote sensing GPP 
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models are developed from the Light Use Efficiency (LUE), which varies spatially 

and temporally due to its dependence on the vegetation type and weather 

conditions (TURNER et al., 2006). Therefore, when considering the constant 

LUE, as proposed by most models, many errors and limitations are introduced in 

the estimation of GPP (WU et al., 2010). Estimating LUE from remote sensing 

permits improve estimates of GPP in regions with heterogeneous coverage.  

One representative of such models is the MODIS (Moderate Resolution 

Imaging Spectroradiometer) GPP product (MOD17) (RUNNING et al., 2004), 

which express the LUE by two scaling factors representing influences from air 

temperature and vapor pressure deficit. Similar logic is used in the Vegetation 

Photosynthesis model (VPM) (XIAO et al., 2004). However, many studies 

questioned the MODIS GPP product and VPM model that requires meteorological 

inputs are often not available as sufficiently detailed temporal and spatial scales 

(SIMS et al., 2008; WU et al., 2010). In addition, some studies have shown that 

GPP values estimated by MOD17 are lower than those measured in tropical 

rainforest (SOUZA et al., 2014) and the VPM model requires local calibration 

(BIUDES et al., 2014b), which makes it difficult have a general model to 

estimate the spatio-temporal variation of the GPP. 

Some studies have shown a positive relationship between vegetation 

indices as EVI (Enhanced Vegetation Index) and NDVI (Normalized Difference 

Vegetation Index) and LUE (JENKINS et al., 2007; NAKAJI et al., 2007; DROLET 

et al., 2008; CHENG et al., 2009). For this reason, models to estimate GPP 

entirely based on remote sensing data have become increasingly common, such 

as the Temperature Greenness Model (TG) (SIMS et al., 2008) and the 

Vegetation Index Model (VI) (WU et al., 2010). 

Most GPP estimation models have been developed for agricultural areas 

(WU et al., 2009; WANG et al., 2010; ROBERTSON et al., 2015). However, the 

TG and VI models have not been tested in tropical ecosystems. Thus, the aim of 

the study was to evaluate the GPP estimated by different remote sensing 

methods in an Amazon-Cerrado transition forest in Mato Grosso, using MODIS 

spectral data. We hypothesize that the estimates of GPP by TG and VI models 

will provide a good fit with GPP measured by EC because the LUE has a good 

relationship with vegetation indices. 

 

2. MATERIALS AND METHODS 

2.1. STUDY AREA DESCRIPTION 

This study was conducted in an area of transitional forest in Mato Grosso 

from June 2005 to May 2008 (Figure 1). The site was a dense semi-deciduous 

forest in the transition between the Amazon and the Cerrado, on the Fazenda 

Maracai (11° 24' 44.28"S and 55° 19' 28.77"W) in the municipality of Sinop, in 

the northern state of Mato Grosso, Brazil. The canopy height is 22-25 m and leaf 

area index (LAI) ranges from 7.0 m2 m-2 in the dry season to approximately 8.0 

m2 m-2 in the wet season (BIUDES et al., 2014a). The vegetation is dominated 

by trees of the species Brosimum lactescens, Quaela paraenses and Tovomita 

schomburkii. The average temperature over 30 years was around 24°C with 

little seasonal variation and precipitation was 2000 mm per year, with 4-5 

months of dry season (May to September). The soil is a Quartzarenic Neosol 
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characterized by the sandy texture (84% sand, 4% silt and 12% clay), at 50 cm 

depth of soil (PRIANTE-FILHO et al., 2014). 

 

Figure 1 - Location of the micrometeorological tower in the Amazon-Cerrado transitional 

forest Mato Grosso, Brazil. 

 

2.2. EDDY COVARIANCE AND MICROMETEOROLOGICAL MEASUREMENTS 

Net ecosystem exchange (NEE) and energy balance were measured using 

the eddy covariance method (VOURLITIS et al., 2011). Eddy covariance sensors 

were mounted on a walk-up tower at a height of 42 m above ground level. The 

eddy covariance system utilized a three-dimensional sonic 

anemometerthermometer (CSAT-3, Campbell Scientific, Inc., Logan, UT, USA) 

to measure the mean and fluctuating quantities of wind speed and temperature 

and an open-path infrared gas analyzer (LI-7500, LI-COR, Inc. Lincoln, NE, 

USA) to measure the mean and fluctuating quantities of CO2 molar density. The 

infrared gas analyzer was installed approximately 5 cm downwind of the sonic 

anemometer to minimize sensor separation and at an angle of 20° to allow 

moisture from rain or dew to rapidly roll-off the light-source window. Raw (10 

Hz) and average CO2 fluxes data were stored and processed using a solid-state 

data logger (CR1000, Campbell Scientific, Inc., Logan, UT, USA). 

Canopy CO2 storage was determined by quantifying the rate of change of 

the CO2 concentration of the air column between the ground surface and the 

eddy covariance sensors (VOURLITIS et al., 2011). Air samples were drawn at 

1, 4, 12, 20, and 28 m above ground level using a diaphragm pump and 

solenoid switching system, and the vertical CO2 concentration profile was 

measured using a closed-path CO2 analyzer (LI-820, LI-COR, Inc., Lincoln, NE, 

USA). The gradient measurement system was operational for 30% of all 

observations, and during system failure canopy CO2 storage was quantified from 
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the CO2 concentration measurements made at the top of the tower, which did 

not differ from those derived from the gradient measurements (VOURLITIS et 

al., 2011). 

Photosynthetically active radiation (PAR) was measured above each 

canopy using a quantum sensor (LI-190SB, LI-COR, Lincoln, NE, USA). The air 

temperature and relative humidity were measured at the top of each tower 

using a thermohygrometer (HMP-45 C, Vaisala Inc., Helsinki, Finland). 

Micrometeorological sensor output was measured every 30 s using a solid-state 

data logger (CR1000, Campbell Scientific, Inc., Logan, UT, USA) and data were 

averaged over half-hourly intervals. Precipitation data were obtained daily from 

a manual rainfall gauge located 5 km southeast of the eddy flux tower because 

data obtained at the eddy flux tower was periodically unavailable and/or 

unreliable (VOURLITIS et al., 2011). 

 

2.3. CO2 FLUX CALCULATION AND DATA TREATMENT 

Carbon dioxide and energy fluxes were obtained by calculating the 

covariance between the fluctuations in vertical wind speed and fluctuations in 

virtual temperature, H2O vapor, or CO2 molar density following a coordinate 

rotation of the wind vectors (McMILLEN et al., 1988) and averaged over 30 

minute time periods. Eddy CO2 flux derived from the open-path gas analyzer 

was corrected for simultaneous fluctuations in heat and H2O vapor while eddy 

H2O vapor flux was corrected for fluctuations in heat flux (WEBB et al., 1980). 

NEE was calculated as the sum of eddy CO2flux and canopy CO2storage. 

NEE data were screened for quality following guidelines established by Ameriflux 

and Anthoni et al. (1999). Data were rejected when (1) eddy covariance sensors 

failed or were down because of calibration and system maintenance; (2) 

warming flags were generated by the system software indicating measurement 

and/or processing errors; (3) spikes in sonic and/or infrared gas analyzer data 

were excessive such as during heavy rainfall events; (4) abrupt changes in wind 

speed caused nonstationary conditions; and (5) eddy flux data were outside 

physically and/or biologically meaningful ranges (VOURLITIS et al., 2011). 

Gross primary production (GPP) was estimated by Equation (1) following 

methods described by Wohlfahrt et al. (2005), 

              𝐺𝑃𝑃 = 𝑁𝐸𝐸 − 𝑅𝑒𝑐𝑜,                                                                    (1) 

 
where 𝑁𝐸𝐸 is the daytime (PAR > 5 µmol photons m-2 s-1) net ecosystem CO2 

exchange measured from eddy covariance and 𝑅𝑒𝑐𝑜 is an average rate of daytime 

ecosystem respiration. Estimates of 𝜀𝑜, daytime 𝑅𝑒𝑐𝑜 and GPP were derived using 

a Michaelis-Menton type function (RUIMY et al., 1995; WOHLFAHRT et al., 2005) 

by Equation (2) over 8-day intervals (to be consistent with MODIS data 

acquisition), 

     𝑁𝐸𝐸 =  
𝜀𝑜𝑃𝐴𝑅 𝐹𝐺𝑃𝑃,𝑠𝑎𝑡

𝜀𝑜𝑃𝐴𝑅+𝐹𝐺𝑃𝑃,𝑠𝑎𝑡
− 𝑅𝑒𝑐𝑜,                (2) 

 

where 𝜀𝑜 is the maximum apparent quantum yield (µmol CO2 µmol photons-1), 

PAR is the measured average 30-minute average photosynthetically active 

radiation (µmol photons m-2 s-1), 𝐹𝐺𝑃𝑃,𝑠𝑎𝑡 is the light-saturated rate of GPP (µmol 
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CO2 m-2 s-1), and 𝑅𝑒𝑐𝑜  is daytime respiration rate that is estimated as the 

intercept of Equation (2) where PAR = 0 µmol m-2 s-1. Estimates of 𝑅𝑒𝑐𝑜 derived 

using these methods compare well to those estimated from nighttime data 

(FALGE et al., 2001), and minimize problems associated with nighttime flux loss 

from low turbulence and errors in objectively selecting a turbulence (i.e., 

frictional velocity) threshold that excludes data measured under inadequate 

turbulence (WOHLFAHRT et al., 2005).. 

 

2.4. SATELLITE IMAGERY AND VEGETATION INDICES 

We downloaded the 8-days composite land surface reflectance data 

(MOD09A1) from the EROS Data Active Archive Center (EDC Daac, 

http://daac.ornl.gov/cgi-

bin/MODIS/GLBVIZ_1_Glb/modis_subset_order_global_col5.pl) based on the 

geo-location information (latitude and longitude) of eddy covariance flux tower. 

The MOD09A1 datasets include seven spectral bands, at a spatial resolution of 

500 m, corrected for the effects of atmospheric gases, aerosols, and thin cirrus 

clouds and include a quality assurance of each pixel (QA) (VERMOTE and 

KOTCHENOVA, 2008). Land surface reflectance values were averaged for the 

nine pixels covering and surrounding each eddy flux towers, and only values of 

clear-sky land surface reflectance were used, i.e., pixels with highest quality 

assurance (QA). Land surface reflectance values from blue (𝜌
𝑏𝑙𝑢𝑒

), red (𝜌
𝑟𝑒𝑑

) and 

near-infrared (𝜌
𝑛𝑖𝑟

) were used to calculate the Enhanced Vegetation Index (EVI, 

Equation 3) (HUETE et al., 1997) and Normalized Difference Vegetation Index 

(NDVI, Equation 4). 

             𝐸𝑉𝐼 = 2.5
𝜌𝑛𝑖𝑟−𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟+6𝜌𝑏𝑙𝑢𝑒−7.5𝜌𝑟𝑒𝑑+1
,                                                             (3) 

           𝑁𝐷𝑉𝐼 =
𝜌𝑛𝑖𝑟−𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟+𝜌𝑟𝑒𝑑
,                                                                              (4) 

 

The product provides MOD11A2 surface temperature data (LST) and 

emissivity, which are derived from the application of split window algorithm and 

stored on a 1 km Sinusoidal grid as the average values of clear-sky LSTs during 

an 8days period. The emissivity in the bands 31 and 32 are estimated from 

types of soil cover, water vapor in the atmospheric column and the lower 

surface temperature, which is separated into sub-bands for optimal recovery 

(WU et al., 2010). Only values of clear-sky LSTs with highest quality assurance 

(QA) were used. 

 

2.5. ESTIMATION MODELS OF GPP BY REMOTE SENSING 

Two models for estimating GPP by orbital sensor data were used in this 

study. Both models combine remote sensing products to represent the variation 

of the Light Use Efficiency (LUE). The Temperature and Greenness model (TG) is 

based exclusively on remote sensing product data and the Vegetation Index 

model (VI) relates surface data such as photosynthetically active radiation and 

remote sensing products data. 

The TG developed by Sims et al. (2008) was based on EVI (Enhanced 

Vegetation Index) and LST (Land Surface Temperature), both derived from 

MODIS products. The TG model (Equation 5) is a combination of a scalar 



_________________Revista Brasileira de Climatologia_________________ 
ISSN: 2237-8642 (Eletrônica) 

Ano 14 – Vol. 22 – JAN/JUN 2018                                             44 

function of LST (Equation 6) and EVI (Equation 7) due to an important 

correlation between LST, vapor pressure deficit (VPD) and photosynthetically 

active radiation (PAR) (WU et al. 2011). 

            𝐺𝑃𝑃 = 𝑚 𝑥 𝐿𝑆𝑇𝑒𝑠𝑐 𝑥 𝐸𝑉𝐼𝑒𝑠𝑐,                                                               (5) 

 

where 𝐿𝑆𝑇𝑒𝑠𝑐  and 𝐸𝑉𝐼𝑒𝑠𝑐  is the scalar function of LST (Equation 6) and EVI 

(Equation 7) and 𝑚  is a scalar (molC m-2 d-1) as a function of annual mean 

nighttime LST (𝐿𝑆𝑇𝑎𝑛) (Equation 8). 

        𝐿𝑆𝑇𝑒𝑠𝑐 = 𝑚𝑖𝑛 [(
𝐿𝑆𝑇

30
) ; (2.5 − (0.05𝐿𝑆𝑇))],                                                    (6) 

        𝐸𝑉𝐼𝑒𝑠𝑐 = 𝐸𝑉𝐼 − 0.1,                                                                              (7) 

        𝑚 = 2.00 + 0.98𝑥𝐿𝑆𝑇𝑎𝑛,                                                                         (8) 

 

where 𝐿𝑆𝑇𝑒𝑠𝑐 is defined as the minimum of two linear equations. This results in a 

maximum value of 𝐿𝑆𝑇𝑒𝑠𝑐 = 1.0 for LST = 30°C and minimum values when LST 

<= 0°C or LST >= 50°C (SIMS et al., 2008; WU et al., 2010). Previous study by 

Sims et al. (2008) show that GPP decreases to zero when the EVI is proximately 

0.1. 

The Vegetation Index model (VI) was proposed by Wu et al. (2010) and 

calculates GPP by multiplying PAR and two vegetation indices (VI) (Equation 9). 

This model has been proposed based on various literature which demonstrate 

that the vegetation indices represent both Light Use Efficiency (LUE) and 

Fraction of Photosynthetically Active Radiation (FPAR), which have the same 

biophysical characteristics (GITELSON et al., 2006; INOUE et al., 2008; WU et 

al., 2009). 

         𝐺𝑃𝑃 = 𝑃𝐴𝑅 𝑥 𝑉𝐼 𝑥 𝑉𝐼,                                                                           (9) 

 

2.6. DATA ANALYSIS 

Monthly, seasonal and annual average with ± 95% confidence interval of 

EVI, NDVI, LST and micrometeorological variables were calculated by 

bootstrapping 1000 iterations of random resampling with replacement (EFRON 

and TIBSHIRANI, 1994) using the Package Boot to R software (CANTY and 

RIPLEY, 2015). Spearman correlation matrix was calculated with volumetric soil 

water content (VSWC) and vegetation indices. 

Willmott’s index " 𝑑 " (Eq. 10), the root mean square error " 𝑅𝑀𝑆𝐸" (Eq. 

11), the mean absolute error " 𝑀𝐴𝐸" (Eq. 12) and the Pearson correlation were 

used to evaluate the performance of the GPP estimated by TG and VI models 

𝑑 = 1 − [
∑(𝑃𝑖 − 𝑂𝑖)

2

∑(|𝑃𝑖 − 𝑂| + |𝑂𝑖 − 𝑂|)2
] (10) 

𝑅𝑀𝑆𝐸 = √
∑(𝑃𝑖 − 𝑂𝑖)2

𝑛
 (11) 

𝑀𝐴𝐸 = ∑
|𝑃𝑖 − 𝑂𝑖|

𝑛
 (12) 

 

values and 𝑛  is the number of observations.  Willmott’s statistic relates the 

performance of an estimation procedure based on the distance between 
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estimated and observed values, with values ranging from zero (no agreement) 
to 1 (perfect agreement). The 𝑅𝑀𝑆𝐸 indicates how the model fails to estimate 

the variability in the measurements around the mean and measures the change 

in the estimated values around the measured values (WILLMOTT and 
MATSSURA, 2005). The lowest threshold of 𝑅𝑀𝑆𝐸  is 0, which means there is 

complete agreement between the model estimates and measurements. The 𝑀𝐴𝐸 

indicates the distance (deviation) mean absolute values estimated from the 
values measured. Ideally, the values of the 𝑀𝐴𝐸, and the 𝑅𝑀𝑆𝐸 were close to 

zero (WILLMOTT and MATSSURA, 2005). 

 

3. RESULTS AND DISCUSSION 

3.1. ANALYSIS OF METEOROLOGICAL DATA AND MEASURED GPP 

Precipitation was seasonal, with 96% of the total annual occurring during 

the wet season and the rest between May and September (Table 1; Fig. 2a), 

which is consistent with the 4-5 months of drought characteristic of the region 

(BIUDES et al., 2015). The highest precipitation values occurred in December in 

each year of the study (Fig. 2a), which is typical for this region as December is 

historically the wettest month (VOURLITIS et al., 2014). 

PAR was 20% higher in the dry season (Table 1), with peaks between 

June and July (Figure 2b) due to the higher number of days of clear skies and 

lower cloudiness. There was no significant seasonal variation in the air 

temperature (Table 1). The average air temperature was 24.8°C, below than 

26.4ºC found by Vilani et al. (2006) from 2001 to 2003. The highest 

temperature was in 2005 (Table 1), and during the following years the air 

temperature decreased slightly (2°C) from 2005 to 2008. There was an intense 

drought throughout the region of the Amazon basin in 2005 (MARENGO et al., 

2008), what deserves special attention because the increase in air temperature 

causes an increase in the vapor pressure deficit (VPD), which can decrease in 

stomatal conductance and net photosynthetic rate (WU et al., 2010). The air 

temperature was inversely correlated with relative humidity (r = -0.72; p-value 

<0.01) and positively correlated with the VPD (r = 0.81; p-value <0.001). 
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Table 1 - Total annual, dry season (May-September) and wet season (October-April) 
precipitation (Ppt, mm) and mean (±95% confidence interval) air temperature (Temp., 

°C), photosynthetically active radiation (PAR, μmol m-2 d-1), relative humidity (%), vapor 

pressure deficit (VPD, kPa), light use efficiency (LUE, gC μmol PAR-1), enhanced 

vegetation index (EVI), normalized difference vegetation index (NDVI), land surface 
temperature (LST, °C), gross primary production estimated by eddy covariance (GPPEC, 
gC m-2 d-1), gross primary production estimated by TG model (GPPTG, gC m-2 d-1) and 
gross primary production estimated by VI model (GPPVI, gC m-2 d-1) in the Amazon-
Cerrado transitional forest. 

Variable Annual Dry Wet 

Ppt 2079.7 76.0 2003.7 

Temp. 24.8±0.3 24.6±0.3 24.9±0.2 

PAR 406.1±21.1 457.3±14.5 367.8±26.1 

UR 76.1±2.2 69.6±2.6 81.2±2.0 

DPV 0.62±0.05 0.80±0.06 0.49±0.06 

LUE 0.41±0.03 0.28±0.02 0.51±0.04 

EVI 0.53±0.02 0.53±0.01 0.54±0.03 

NDVI 0.85±0.02 0.87±0.01 0.83±0.03 

LST 27.0±0.6 27.93±0.45 26.4±0.7 

GPPEC 8.0±0.3 6.96±0.24 8.8±0.3 

GPPTG 8.6±0.3 8.7±0.2 8.5±0.4 

GPPVI 18.5±0.4 19.3±0.4 17.6±0.5 

 

The relative humidity was 14% higher in the wet season due to high 

precipitation (Table 1). There was a lower relative humidity in 2005, which is 

consistent with the intense drought reported for the region (MARENGO et al., 

2008). The VPD followed the reverse pattern of precipitation and was 38% 

higher during the dry season (Table 1). The variables such as relative humidity 

and VPD used to characterize spatial and temporal patterns of water stress over 

larger scales affect GPP estimates (BIUDES et al., 2014b; ROBERTSON et al., 

2015). 

The light use efficiency (LUE) was 44% higher in the wet season (Table 

1) with a strong positive correlation with the precipitation (r = 0.68; p-value 

<0.05) and a negative correlation with PAR (r = -0.59; p-value < 0.05), but 

there was no correlation with the air temperature. The importance of 

precipitation for the LUE has been well documented and observed by Sendall et 

al. (2009) and Vourlitis et al. (2011) to study the net photosynthetic rate and 

net exchange system in the same area of study. The negative relationship 

between PAR and LUE is not conclusive, as there is little evidence that the LUE is 

affected by radiation (BOARDMAN, 1977). 

The monthly average of GPP showed a consistent seasonal trend (Figure 

2e) with a positive correlation with the precipitation (r = 0.56; p-value < 0.05). 

The GPP was 21% higher during the wet season (Table 1). The strong direct 

relationship between water availability, rainfall, leaf water potential and 

photosynthesis have been well documented in the tropical semi-deciduous 

forests (MIRANDA et al., 2005; SENDALL et al., 2009; BIUDES et al., 2014a). 
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Figure 2 - Total monthly precipitation (a) and mean (±95% confidence interval) monthly 
photosynthetically active radiation (PAR) (b), air temperature (c), relative humidity (d) 
and gross primary production measured by eddy covariance (GPPEC) (e) in the Amazon-
Cerrado transitional forest. The shaded portion in each figure depicts the dry season at 
each site. 
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3.2. ANALYSIS OF REMOTE SENSING PRODUCTS 

Seasonal variations of EVI were not consistent, with only a 1% difference 

between the wet and dry seasons (Table 1). EVI peaks occurred during the 

transition period between the dry-wet seasons, especially in November (Figure 

3a). The increase of EVI in this period is described as the response to the 

development of new leaves, the increase of leaf area index (LAI) and the 

increase of nutrient concentration in leaves that typically occur in the wet 

season (XIAO et al., 2005). The EVI was only significantly correlated with the air 

temperature (r = 0.67; p-value <0.05). There was a seasonal variation in the 

NDVI with an average 4.5% higher during the dry season (Table 1) and 

minimum value of 0.59 and a maximum of 0.92 (Figure 3b). The NDVI had no 

correlation with any micrometeorological variable. 

Seasonal variations in LST values were consistent over the years, 

averaging 5% higher during the dry season with peaks in the dry-wet transition 

period (Table 1; Figure 3c). The maximum LST was found in 2005, which 

confirms the values found for the air temperature measured in 

micrometeorological tower. The LST was negatively correlated with rainfall (r = -

0.75; p-value <0.01) and positively correlated with the VPD (r = 0.61; p-value 

<0.05). 

E
V

I

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

N
D

V
I

0.78

0.80

0.82

0.84

0.86

0.88

Month - Year

7  9  11  1  3  5  7  9  11  1  3  5  7  9  11  1  3  5  

L
S

T

24.0

25.0

26.0

27.0

28.0

29.0

30.0

2005 2006 2007 2008

a

b

c

 

Figure 3 - Mean (±95% confidence interval) enhanced vegetation index (EVI) (a), 

normalized difference vegetation index (NDVI) (b), land surface temperature (LST) (c) in 
the Amazon-Cerrado transitional forest. The shaded portion in each figure depicts the dry 

season at each site. 
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3.3. ANALYSIS OF THE PERFORMANCE OF THE GPP ESTIMATION 

MODELS 

The GPP estimated by the temperature and greenness model (GPPTG) had 

no correlation with LST and the DPV. There was no correlation between the 

GPPTG and the GPP measured in the tower (GPPEC; r = -0.15) and presented 

coefficient Willmott (d) equal to 0.37, MAE equal to 0.91 gC m-2 8 d-1 and RMSE 

equal to 2.46 gC m-2 8 d-1. The GPPTG was on average 7% higher than the GPPEC 

throughout the year, 25% higher in the dry season and 3.5% lower in the wet 

season (Table 1; Figure 4). 

The TG model was developed to estimate GPP as a function of surface 

temperature and water stress (WU et al., 2010), which allows monitoring the 

physiological aspects of vegetation by incorporating EVI and LST, once GPP 

could be affected by photosynthetic activity, radiation and climatic variables 

(SIMS et al., 2008). Although the GPPTG had no correlation with LST and DPV, 

the GPPTG had positive correlation with PAR (r = 0.72; p-value < 0.01). 
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Figure 4 - Mean monthly gross primary production measured by eddy covariance 
(GPPEC) and estimated by temperature and greenness model (GPPTG) and vegetation 
index model (GPPVI) in the Amazon-Cerrado transitional forest. The shaded portion in 
each figure depicts the dry season at each site. 
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The lack of correlation between GPPEC and GPPTG was due to lack of 

synchronism between the GPPEC with EVI and LST. The time series of EVI was 

delayed by 2 months with GPPEC (r = 0.44; p-value < 0.01). However, the 

positive relationship of GPPEC and EVI of tropical forests is well documented and 

expected, since the EVI dynamics is related to the forest canopy cover dynamics 

(XIAO et al., 2005). Thus, the spectral reflectance is positively correlated with 

LAI, concentration of photosynthetic pigments and nutrients in the leaf (ASNER 

and MARTIN, 2008). LST has little difference with the air temperature in forest 

regions, but this difference is greater in regions with sparse vegetation (SIMS et 

al., 2008). As the average daily air temperature does not vary during the year, 

the TG model also presented limitation to respond to changes in LUE throughout 

the year. 

The model VI estimates the GPP exclusively using satellite data. 

However, the EVI (r = 0.06) and NDVI (r = 0.16) had no significant correlation 

with the GPPEC. The GPPVI had low negative correlation with GPPEC (r = -0.27), 

but was not significant, and Willmott coefficient (d) was equal to 0.11, MAE was 

10.4 gC m-2 8 d-1 and RMSE was 12.1 gC m-2 8 d-1. The GPPVI was on average 

129% higher than the GPP measured in the tower throughout the year, 178% 

and 100% higher in the dry and wet seasons, respectively (Table 1; Figure 4). 

The use of VI model has different results according to the type of 

vegetation and water conditions. The VI model had good potential application in 

deciduous forests (WU et al., 2010), but not in mixed forests and thickets due to 

the complexity of physiological responses of each species, which are mixed 

within a single pixel (GEBREMICHAEL and BARROS, 2006). According to Wu et 

al. (2010), this method works well in homogeneous ecosystems such as 

agricultural areas. The use of this model has been shown to be problematic in 

dry environments because the vegetation indices do not show the enough 

sensitivity to estimate LUE in these conditions (SIMS et al., 2008; ROBERTSON 

et al., 2015). 

 

4. CONCLUSIONS 

In this research, two models were used (TG and VI) to estimate GPP in 

an Amazon-Cerrado transition forest. The combination of EVI and LST was not 

able to represent the seasonality of LUE, and consequently could not explain the 

real environmental stress in the study area. The VI model stands out for not 

depend on any given meteorological input and neither are necessary background 

information on the type of vegetation (WU et al. 2010). However, no used 

models were adequate to estimate the GPP. 

The results presented here also highlight some of the complexities in 

validating satellite products. While we pointed out some potential biases in the 

satellite GPP products, further study over a variety of Brazilian forests is needed 

to quantitatively assess the TG and VI and other methods in order to improve 

their accuracy. 
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