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ABSTRACT: The Brazilian Amazon (BAMZ) and Northeast Brazil (NEB) regions have been 
facing intense climate extremes since the beginning of 21st century. In BAMZ, these 
climate extremes can modify the Amazon forest and its essential role in the local and 
remote climate. This study evaluated whether the extreme rainfall events in the both 
regions will be more intense and frequent in the future due to the increase of greenhouse 
gas emissions. An adapted version of the RX5day index was applied to distinguish 
between different types of extreme rainfall cases in the ETA model output for the decade 

2089-2099 compared to the 1980-1990 decade. The results have shown that although 
the total rainfall is expected to be reduced by at least 1/3 (DJF) in the case of rare 
events, this kind of extreme rainfall will contribute with a higher amount of rainfall and 
will occur more frequently in both areas by the end of the 21st century. Heavy and very 
heavy events decrease for both areas (total rainfall amount and frequency). Results 
suggest that stakeholders must be prepared to cope with the population’s need for 

assistance during floods and rainfall reduction and reinforces the need to adapt to worse 
climate extremes projections 

Keywords: Extreme rainfal events, Amazon, Brazilian Northeast, Climate Change, ETA 
model. 

ANÁLISE DOS EXTREMOS DE CHUVAS NO NORTE DA AMÉRICA DO SUL E SEUS EFEITOS 
NO CLIMA FUTURO COM BASE NO CENÁRIO A1B 

RESUMO: A Amazônia brasileira (BAMZ) e a região nordeste (NEB) têm passado por 

eventos climáticos extremos desde o inicio do século XXI. Na AMZ esses extremos 

climáticos comprometem a floresta amazônica e seu papel essencial para o clima local e 
não local. Esse estudo analisou se os eventos extremos de chuva em ambas as regiões 
serão mais intensos e frequentes no futuro devido ao aumento dos gases do efeito 
estufa. Uma versão adaptada do índice  RX5day foi utilizada para distinguir entre os 
diferentes tipos de casos de eventos extremos para os resultados das simulações 
numéricas, provenientes das simulações com o modelo  ETA para a década de 2089-2099 

e comparada a década de 1980-1990. Os resultados mostram que embora se espere uma 
redução 1/3 no total de chuva (DJF) os eventos do tipo raro irão contribuir com uma 
quantidade de chuva maior e ocorrerão com mais frequência nas duas áreas no final do 
século XXI. Eventos forte e muito forte diminuirão nas duas áreas (total de chuva e 
frequência). Os resultados sugerem que os tomadores de decisão deverão estar 



_________________Revista Brasileira de Climatologia_________________ 
ISSN: 1980-055x (Impressa) 2237-8642 (Eletrônica) 

Ano 13 – Vol. 20 – JAN/JUL 2017                                             118 

preparados para lidar com a necessidade de assistência da população durante as 

enchentes e redução de chuvas e reforça a necessidade de adaptação para projeções de 

eventos climáticos piores. 

Keywords: Chuva extrema, Amazônia, Nordeste Brasileiro, Mudanças Climáticas, Modelo 
ETA. 

 

1.INTRODUCTION 

Brazil has faced two major extreme climate events in this decade, 

namely the flood in Amazon and the drought in the Northeast region, both 

considered record events in the last 50 years (MARENGO et al., 2013a). These 

events happened in the first half of 2012, fairly close together. According to 

Marengo et al. (2013a) and Espinoza et al. (2013), however, the events were 

attributed to different dynamical phenomena. Furthermore, these extreme 

climate conditions have subjected the inhabitants of the Amazon and Northeast 

regions to great economic losses (TOMPKINS et al., 2009; HASTENRATH, 2012; 

MARENGO et al., 2013b; MARENGO AND BERNASCONI, 2015; MARENGO et al., 

2016). Over the past half-century, the Amazon basin has experienced severe 

droughts and floods more frequently than normal, which has been confirmed by 

river level measurements (GLOOR et al., 2013; SATYAMURTY et al., 2013).  The 

northeast region has been through the worst drought in decades (2012-until 

now; MARENGO et al., 2016). These are important and strong argument to 

justify the climate change discussion and to introduce the global warming 

implications to climate and weather extremes seen in this region. 

The threat that global warming imposes upon the Amazon basin and the 

tropical forest is of great concern. Analysis by Gloor et al. (2013) has suggested 

an increased trend in river discharges in the Northwest Amazon over the 1990-

2009 period combined with an increase in annual precipitation over the area. 

Guimberteau et al. (2013) also highlight that during 1980-2000 period, the 

Amazon hydrology has been severely affected by extreme climate events. 

Espinoza et al. (2013) examined the 2012 flood and showed that it was caused 

by the coincident peak of the 2 northward tributaries of the Amazon River 

reaching their maximum discharge in April 2012 (see also GLOOR et al., 2013). 

As with previous floods (1986, 1993 and 1999), the 2012 event was attributed 

to a La Niña episode. 

As part of the climate variability in Brazilian northeast region, drought 

are much more frequent due to the characteristic semi-arid / arid climate which 

is predominant in that area (annual rainfall can vary from 2000 mm to 700 mm 

from the cost to the western of the region (HASTENRATH, 2012; MARENGO AND 

BERNASCONI, 2015), neighboring the east of AMZ region). Exacerbated use of 

the natural resources, soil degradation and a decrease in the total amount of 

rainfall over the years are some of the factors that enhance the already high 

probability of extensive droughts in the region (MARENGO AND BERNASCONI, 

2015; MARENGO et al., 2016). 

Economic losses due to recurring droughts and floods are brought to 

attention in Marengo et al. (2013b) for BAMZ. Citing numbers for Acre and 

Amazonas they showed how mistakes in investments have made the low-income 

population poorer. The national government facilitates substantial help and 

amounts of financial resources during the hazards, but this ceases after a couple 
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of weeks and is not part of an effective action plan toward adaptation to climate 

change (MARENGO et al., 2013b). Tompkins et al. (2009) discuss the policy 

implemented and the challenges that lie ahead in taking steps toward better 

dealing with vulnerabilities in the Northeast region. On the other hand, Marengo 

et al (2013a; 2016) and Marengo and Bernaconi (2015) outline that since 

1970’s the number of human deaths caused by the drought in the NEB were 

drastically reduced as a consequence of the intervention made by the 

government over the years. The constructions of dams, government programs 

to offer financial help to farms that have lost crops and livestock are a few 

examples given by the authors (also HASTENRATH, 2012). More recently the 

partially conclusion of the São Francisco River water transfer system (DUARTE, 

2014; MENDES et al., 2015.) is another example of the efforts to build resilience 

in the region, although it hasn’t solve the problem yet. 

Brazil experienced an unprecedented hydroelectric and water supply 

crisis in its Southeast region, caused by a strong reduction in precipitation in 

2014-2016 (COELHO et al., 2016a,b; MARENGO AND ALVES, 2016; and NOBRE 

et al., 2016). Changes in the atmospheric large scale circulation, which involved 

the Pacific and the Atlantic oceans, implicated in an atmospheric blocking 

preventing the humidity coming from Amazon to enter the southeastern region 

(see previous references). Moreover, there was a weak South Atlantic 

Convergence Zone (SACZ) acting during the austral summer in the region 

(COELHO et. al, 2016a). Back in 2001, an energy crisis took place directly linked 

to a long dry period, which is mentioned in Silva et al. (2007), Marengo et al. 

(2012), Coelho et al. (2016a) and reported in detail by De Moraes Drumond and 

Ambrizzi (2005). An improved precipitation data series can help both past and 

future analysis of this variable behavior in South America (SILVA et al., 2007). 

Efforts have been made to provide model projections which could help 

stakeholders foresee some of the impacts that changes in extremes could cause 

in the future. Marengo et al. (2012) showed that the total annual rainfall in 

Amazonia and São Francisco Basins will decrease during the period of 2071-

2100. Valverde and Marengo (2014) have found an increase in short-term 

precipitation intensity in the southeast and northern areas of the Amazon basin. 

When the indexes obtained from the data model were compared with those 

obtained from CPC data, it became clear that there might be more intense and 

frequent extreme rainfall events in future. 

An increase in seasonal mean precipitation in large areas of the Amazon 

basin was observed in experiments performed with the Rossby Centre Regional 

Model under the A1B scenario (SORRENSSON et al., 2010). As a consequence, 

this could also cause an increased risk of extreme precipitation in the northern 

Amazon region during the austral summer. In these experiments, projections 

obtained for 2080-2099 were compared against simulations for 1980-1999, 

showing the great importance of these kinds of simulations to learn more about 

the behavior of extreme events. On the other hand, Guimberteau et al. (2013) 

performed hydrologic simulations with data from emission scenarios B1, A1B 

and A2 to obtain discharge projections for the middle and the end of the 21st 

century. While in the western portion of the Amazon basin an increase in 

precipitation was found, which would lead to an increase in the high flow, the 

eastern, southern and northern areas of the basin should go through a sensitive 

reduction in the usually low flow (dry period, decrease of approx. 55% in Xingu 

basin). 
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Based on data from the PRECIS regional climate model system, Marengo 

et al. (2009) suggest that precipitation extremes over the north and 

southwestern areas of Amazonia will intensify, which will imply a greater risk of 

floods in the future. For eastern amazon and northeast region authors found a 

negative tendency for rainfall indexes calculated over 2071-2100 time slice. 

Blázquez et al. (2012) testing two different spatial resolutions and data from the 

Japanese MRI model, also found an increase in precipitation and temperature for 

the Amazon in the 2015-2039 and 2075-2099 time slices. For northeast region 

authors found negative bias of 1.0 mm/day. 

As can be observed, results from climate projections suggesting the 

future of extreme events in Brazil and South America indicate clear evidence 

that the climate is already undergoing significant changes. However, Satyamurty 

et al. (2010) analyzing observed data from 18 meteorological stations, showed 

that only 1/3 of these stations had trends indicating increase or decrease in the 

total annual rainfall for Amazonia. 

In this paper, we aim to quantify and evaluate the future change of 

rainfall extremes over Brazil, focusing mainly on the Brazilian Amazon basin 

(BAMZ) and the Northeast region of Brazil (NEB), both which are highly 

vulnerable to the extreme events, especially those related to rainfall. This will be 

achieved by an analysis of model output data relative to a numerical experiment 

considering a rapid greenhouse gas emission, as proposed by the A1B scenario 

(NAKICENOVIC et al., 2000).  

 

2. MATERIAL AND METHODS 

2.1.OBSERVED DATA 

Silva et al. (2007) presented an improved gridded precipitation based on 

observed data for South America, which was supposed to be used for climate 

and hydrologic studies as well as for large-scale anomalies analysis and, as 

performed here, for the evaluation of climate models. A characteristic 

highlighted in the previous work is the fact that the CPC dataset has fewer dry 

days, extreme precipitation events and a greater number of low precipitation 

days.  These details were expected since the interpolation performs a 

smoothening of the variable. The daily precipitation values consist of an average 

value for a 0.5º lat/lon spatial resolution area. These data were compared to the 

climate projections to indicate the proxy value of both datasets – in other words, 

how well the model simulates the present climate.  

 

2.2. NUMERICAL EXPERIMENTS 

Chou et al. (2012) described the numerical experiments performed with 

the limited area ETA model (MESSINGER, 1988; BLACK, 1994) to obtain 4 sets 

of data relative to the present climate and that of the 21st century. The ETA 

model was forced by initial and boundary conditions supplied by the UK Met 

Office Hadley Centre (MOHC) HadCM3 global model (GORDON et al., 2000; 

COLLINS, et al., 2001). The global model had a 2.5º x 3.75º lat/lon horizontal 

resolution with 19 vertical levels. Through a perturbed physical ensemble which 

involved more than 300 members, 16 different model configurations were 

evaluated to choose the best representation of the results range. The HadCM3 
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model simulation with these different configurations used the A1B IPCC 

(Intergovernmental Panel on Climate Change) scenario (NAKICENOVIC et al., 

2000). Finally, 3 members were selected as the best representatives for 

sensitivity of the global mean temperature identified as low, medium and high, 

beyond the unperturbed member that was obtained using the standard 

configuration of the HadCM3 model. 

To apply the extreme rainfall identification and classification 

methodology, two decades were extracted from the numerical experiments 

results: the 1980-1990 decade, to represent the control experiment, and the 

2089-2099 decade from the high sensitivity dataset, to analyze future changes 

of precipitation extremes. Although the model domain covers major parts of 

South America, our focus is on BAMZ and NEB, as illustrated in Figure 1. The 

choice to include only 20 years as a time slice for analysis was based in the time 

and computational available resources. 

 

2.3. IDENTIFYING AND CLASSIFYING THE RAINFALL EXTREMES 

The methodology applied to identify and classify the extreme events is 

based on the RX5day climate extreme index (FRICH et al., 2002; GAO et al., 

2006; KLEIN TANK et al., 2009). However, to quantify and select extreme 

rainfall events by intensity, the adaptation proposed by Brito et al. (2014) was 

applied. Considering our data set, composed of 2 different decades, 1980-1990 

and 2089-2099, the December-January-February trimester of each year (10 

trimesters per decade) was analyzed. Thus, for the present day climate, 10 

austral summers were analyzed, accounting for 900 days per decade. With 

these two sets isolated, we classified the extreme rainfall event based on an 

average obtained from a set composed of the maximum daily rainfall value in a 

5-day period, namely the climatology of the maximum rainfall. A second step 

was to compare each dataset value against the climatology of the maximum 

rainfall, and once the value was equal or higher than the climatology maximum 

value, it was defined as an extreme event. 

The last step consisted of applying the rules to classify the rainfall 

precipitation events. Therefore, the events between the maximum climatology 

and its standard deviation were classified as heavy events. Those events higher 

than the climatology plus its standard deviation, and smaller than the 

climatology plus twice its standard deviation, were classified as very heavy 

events. The last category was that of rare events, in which the events were 

higher than the climatology plus twice its standard deviation. These procedures 

were performed for each grid point and for each of the time slices evaluated, 

thus avoiding the use of a unique threshold value over a large domain where 

climatology patterns can differ. 

 

3. RESULTS AND DISCUSSIONS 

3.1. SPATIAL ANALYSIS 

For the purpose of comparison, the dataset from the ETA model was 

degraded from a 0.4º lat/lon grid to a 0.5º lat/lon grid to agree in spatial 

resolution with the CPC data. Next, the bias between ETA and CPC data for the 

austral summer (DJF) of the 1980-1990 decade was obtained and the results 
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displayed in Figure 2. The bias for the accumulated rainfall produced by heavy 

events is presented in Figure 2a. It can be observed that for a large continent 

extension the model underestimates the rainfall related to heavy events, except 

over the areas north-northeast and south-southeast of Brazil and over the 

Andean regions as well. Negative values are observed over most of the Amazon 

region. In Figure 2b, we can see that the areas previously highlighted with 

positive differences are broader in the bias for very heavy events (Figure 2b), in 

the south-southeast region of Brazil. A band of positive bias is also shown and 

crosses from northwest to southeast in Figure 2c, which resembles the position 

of the SACZ. Futhermore, the expansion of the positive bias areas is 

differentiable between the north, south, and southeast areas of the continent, 

where these last two present a positive bias for accumulated rainfall ranging 

from 60 to 150mm (Figure 2c). 

The bias for Figure 3 were obtained by subtracting the future climate – 

represented by the 2089-2099 decade – from the current climate, represented 

by the 1980-1990. The Figures 3a, 3b, and 3c are specific for the bias of heavy, 

very heavy and rare events respectively. Negative biases for most of the 

Brazilian extension are found for heavy and very heavy extreme events, 

including the BAMZ and NEB (Figures 3a and 3b). However, in Figure 3b, it is 

discernible that areas with positive bias are expanding northward in both regions 

even though the range does not vary in the same intervals (anomalies between 

10-200 mm in Fig. 3a and between 5-120 mm in Fig. 3b). Rare events, for 

which the biases are shown in Figure 3c presents a major extension with 

positive values for both BAMZ and NEB regions. Amazonas State presents 

practically its whole extension with a positive bias (~60 mm). Pará, Maranhão 

and Acre State present approximately half of their extensions with similar 

values. These results partially agree with the increased tendency obtained from 

Brito et al. (2014), which observed the highest values for 1998-2013 in northern 

Pará and Southern Amazonas State, indicating that the observed patterns 

should continue in the future. Negative biases of less than 1mm/day were found 

for NEB in 2071-2100 time-slice (MARENGO AND BERNASCONI, 2015) using 

CMIP3 HadCM3 data, downscaled by ETA model (CHOU et al., 2012). Decrease 

in precipitation for NEB were also found in Marengo et al. (2009) between 10-

15% (B2), and for the A2 scenario, could be up to 40% drier in the 2071-2100 

time-slices. Marengo et al. (2016) discussing the CMIP5 projections for NEB, 

downscaled by ETA model simulations, for the 4 RCP (Representative 

Concentration Pathways, 2.6,4.5,6.0,8.5) found a broader area with positive 

bias, the higher the RCP, the broader the area in the north (Maranhão, north of 

Piauí, Ceará and Rio Grande do Norte) of the northeast region with biases  ≥ 

0.5mm/day. As can be observed, depending on the different projections used 

(CMIP3 and CMIP5) you may have different results for NEB, and the most recent 

ones points out to a not so dry future for the previous months of the peak of the 

rainy season, depending on the RCP considered. 

In Colombia, Venezuela and Peru a similar spatial pattern is noticed when 

the bias obtained for heavy, very heavy and rare events show changes from 

negative to positive, indicating a higher precipitation quantity associated with 

this type of event also for these countries.  

The Roraima State, one of the areas highlighted by Brito et al. (2014), 

presents a decrease in the accumulated rainfall for heavy and very heavy 

events, agreeing with the behavior evaluated by the authors. This pattern was 
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also observed for coastal areas (east to west, north of the continent). The bias 

also increases from negative to positive in the southwestern Amazon and 

southeastern Brazil regions, which resembles the climatological position of the 

SACZ, as can be seen from Figures 3a-c.  

Another parameter calculated in this work was the percentage 

contribution of each type of extreme event to the total amount of rainfall 

precipitated over the continent. Figures 3d, 3e and 3f present the bias between 

these percentages, obtained by subtracting the future from the present climate. 

Northeast Amazon presents a positive bias located in Pará State, ranging from 

10-30% in Figure 3d and 15-20% in Figure 3e. Heavy events contribution in 

northwestern Amazonas State varies from 10-20% (Figure 3d), and from 10-

15% for very heavy events (Figure 3e). These positive values indicate that 

these two particular types of extreme events will account for a higher amount of 

precipitation in the future (compared to the total precipitation in the area). 

For rare events the Figure 3c shows that most Brazilian territory presents 

a positive bias, indicating that this type of extreme event will be responsible for 

a major amount of rainfall in the final decade of the 21st century when 

compared to the reference decade. The contribution from rare events presents 

an increase in NEB ranging from 5 to 50%, which means that this kind of 

extreme event will be responsible for a higher amount of the total precipitation 

in this area for the DJF trimester. West-central Brazil, southwestern BAMZ, 

neighboring countries and most of the rest of the continent present values 

ranging from 5 to 10%, suggesting that these areas will have fewer changes 

with regard to the amount of precipitation attributed to rare events (Figure 3f).  

Chou et al. (2014) performed climate simulation using HadGEM2-ES 

(COLLINS et al., 2011; MARTIN et al., 2011), which replaced the previous 

version HadCM3 used in their previous work (CHOU et al., 2012; MARENGO et 

al., 2012), and also as a base for the present study. The authors discern an area 

covering the north region of Brazil with a decreased precipitation (DJF) but it 

seems to be moving towards south of Brazil when the results from the former 

simulations are compared to the newest ones. 

Bellprat et al. (2015) performed an analysis also using HADGEM2-ES 

projections. Even with all the improvements made from the older version 

(HadCM3) to the new one (HADGEM2-ES) the authors concluded that 

precipitation variability in the South America is still poorly represented which 

prevents any robust affirmation regarding seasonal rainfall extremes. It 

suggests that it is necessary to continue employing efforts to improve the 

representation of convective process, for example, which happens in sub-grid 

scales.  

Chadwick et al. (2015) also used CMIP5 datasets. It is suggested that to 

advance in public policies and planning, it is necessary to know what kind of 

extreme event will be more probable, the area where it is supposed to happen, 

and an estimation of its magnitude. The study also analyzed the use of 

ensembles explaining that it masks important results, as an agreement of the 

areas prone to reduction in rainfall.  

Comparing our results, obtained using the scenario A1B from IPCC 

(2007) to the ones obtained by more recent studies, using the RCP’s (CMIP5), 

for example, Chadwick et al. (2015) indicate that north of Amazon and NEB as 
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well the area where there is a transition from Amazon to the semi-arid are 

expected to go through a reduction in precipitation, during the 2071-2100 

period compared to 1971-2000. The study estimates changes around ±20% in 

precipitation in approximately 25% of the tropical area affected (Brazil has 13% 

of this area) under the RCP 8.5. All these findings agree with the results found 

in our analysis. Marengo et al. (2016) analyzing precipitation changes under the 

RCP 8.5 highlight a positive bias in the north area of the NEB, which includes 

Maranhão, north of Piaui, Ceará and most of Rio Grande do Norte state. Smaller 

positive values are found for semi-arid region and neutral values are associated 

to east coast of Brazil. These results were obtained for the DJF trimester. 

Considering conclusions pointed out by Hastenrath (2012) regarding the 

importance of the precipitation in the months previous to the peak of the rainy 

season in the NEB region associated with a favorable SST gradient in the 

Tropical South Atlantic and in the Tropical Eastern Pacific oceans, it may be a 

positive feature for the end of the century. 

 

3.2. INTEGRATED ANALYSIS 

To better assess the changes regarding extreme precipitation events, the 

results were integrated in the target areas. The first set of graphics shows the 

average rainfall in the region attributed to each type of rainfall extreme. Figure 

4a presents the total rainfall averaged for heavy events, for the 10 trimesters in 

each decade in the BAMZ. A decrease from 142 mm to 100 mm is observed, 

which represents almost 30% less rainfall in the area. In the secondary axis, the 

accumulated events are plotted to show the average for the 10 trimesters in 

each decade. This parameter has decreased too, representing almost 13% fewer 

events in the future. For very heavy events, presented in Figure 4b, there are 

also decreases by ~30% for accumulated rainfall and by 20% for events in this 

category. For rare events, a slight increase for accumulated rainfall of 2 mm on 

average is observed, accounting for 4% more rainfall when compared to the 

1980-1990 decade (Figure 4c). Accumulated events show an increase of nearly 

4%, which corresponds to 105 more events by the end of the 21st century. 

Figure 4d presents the bias in percentage of rainfall produced by each 

type of event; according to this figure, it is observed that all types of events 

decrease over BAMZ except the rare events. This was expected considering the 

charts already shown (for average rainfall).  

Using the RCP 8.5, according to Chadwick et al. (2015), changes in the 

precipitation amount no longer associated to the expected climate variability are 

already present by the middle of this century, which is much sooner than 

expected. Chen et al. (2014) analyzed a not so extreme RCP (4.5) and 

concluded that there is greater certainty for areas that will be dryer than the 

ones that will be wetter. They also used the R5day index for the 2080-2099 

time-slices and compared with the 1986-2005 period. Authors concluded in 

Amazon basin there is a consensus between models that there will be reduction 

in the precipitation during all seasons, which also agrees with our results. 

Frequency results presented in Figure 4e show increases in normal 

rainfall and rare events (2% and 5% respectively), while heavy and very heavy 

events present decreases of 13% and 19% respectively. In terms of 

contributions of each type of extreme event to the total rainfall, normal rainfall 
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decreases by 8% while all other types of extreme rainfall increase. The sum of 

all extreme events and rare events present nearly 5% and 4% more rainfall 

respectively, while heavy and very heavy events increased by less than 1%. 

The parameters of the NEB are reported in Figure 5. The accumulated 

rainfall decreased from 108 mm to 64 mm, which represents a decrease of 

about 40% in heavy events on average (Figure 5a). Comparing the accumulated 

events for both decades, there is a decrease of 25% in the 2089-2099 decade. 

For very heavy events (Figure 5b), the same decrease tendency is shown, by 19 

mm and 435 events, ~33% and ~25% less rainfall and frequency, respectively. 

Still, rare events presents an increase of 4 mm which accounts for 10% more 

precipitation and an extra 54 events on average, accounting for 6% more 

events in the future (Figure 5c). It is important to highlight that the trimester 

analyzed do not correspond to the peak of the rainy season in the region, which 

according to authors previously cited goes from February-May. 

In the second row, Figures 5d-f reports the differences in percentage 

between the following analyzed parameters. From figure 5d, a decrease of 39% 

can be observed in the total amount of rainfall, and consequently a decrease in 

the amounts of heavy and very heavy events, of 40% and 32% respectively. 

Only rare events are increased, by nearly 12 % (Figure 5d).  

Besides this parameter, the frequency of normal and rare events will 

increase in the Northeast region by 3% and 7% respectively, as can be 

observed in Figure 5e. In the same figure, heavy and very heavy events will 

reduce by 26% and 24% respectively in their frequencies. A decrease can also 

be seen in normal and heavy events’ contribution to the total rainfall (Figure 5f), 

although the latter is less than 1%.  The sum of all extreme events, very heavy 

and rare events present an increase which varies from 2% (very heavy events) 

to 12% (all types of extreme events). 

Summarizing our findings, Table 1 presents the results obtained 

throughout the analysis. The total rainfall averages associated with the heavy 

and very heavy events are reduced, although an increase was observed for rare 

events in both studied areas, as can be seen from arrows pointing down and up. 

Average frequency agrees with average rainfall, in terms both of increase and of 

decreasing signs for the three types of events in these two areas. Average 

frequency is shown in graphics 4a-c and 5a-c (lines laying over bars), and the 

bias calculated from the absolute frequency values is shown in figures 4e and 5e 

for both areas. Total rainfall attributed to each kind of event also agrees with 

the previous parameters (i.e., increases and decreases found for the same types 

of events; Figures 4d-5d). The contribution to the total rainfall, however, 

presents a difference between the two areas only for heavy events (it increases, 

like all the other types of rainfall events), but in the Northeast region it 

decreases, while the other parameters increase, agreeing with the Amazon 

numbers. 

Comparing both regions, it is possible to observe similarities in the 

measured parameters. For heavy and very heavy events, both areas present a 

decrease in the total average rainfall and frequency for the DJF trimester in 

2089-2099 (Figures 4a, 4b and 5a, 5b). On the other hand, rare events present 

an increase in these two parameters in both areas (Figures 4c and 5c). Total 

rainfall attributed to rare events increased, while it is reduced for all other types 

in both areas (Figures 4d and 5d). Frequencies for normal and rare events 



_________________Revista Brasileira de Climatologia_________________ 
ISSN: 1980-055x (Impressa) 2237-8642 (Eletrônica) 

Ano 13 – Vol. 20 – JAN/JUL 2017                                             126 

(heavy and very heavy) increased (decreased), confirming the changes 

observed in the previous parameters for both areas (Figures 4e and 5e). 

Regarding the contribution of each type of event to the total rainfall, reductions 

are observed for all types of events except the normal ones in the Amazon 

region; however in the Northeast region an increase was observed not only for 

normal events but also for heavy events (Figures 4f and 5f).  

When Figures 4d and 5d are compared to 4f and 5f, it is clear that the 

contribution of events to the total rainfall will be reduced independently of the 

type of event, because the total rainfall in both areas will be reduced by at least 

30% in the future (in the Northeast region, this reduction could reach up to 

40%). Moreover, all the changes observed in the different types of extreme 

events are the result of a redistribution of the remaining rainfall, which will have 

a major proportion attributed to rare events (higher than the values attributed 

to it in the present climate, as we can see from Figures 4c and 5c – increase in 

accumulated rare rainfall events for both regions).  

 

4. CONCLUSIONS 

Summarizing, the results showed that the rare events will increase in 

intensity and frequency in the Amazon and Northeast Brazilian regions by the 

end of the 21st century. The performed analysis summing all the grid points in 

these two regions also confirmed these findings. The results indicate that such 

events will account for a major amount of rainfall during the austral summer in 

the 2089-2099 decade, even with the reductions in the total rainfall in both 

areas, which suggests redistribution between the types of extreme. However, 

rare events will not be the top rainfall contributor, since heavy and very heavy 

events are the most frequent ones and responsible for the largest amounts of 

rainfall in these areas. 

We bring to attention that more frequent extreme events will imply a 

higher probability of floods, especially in the Amazon basin. Of course, it not 

only depends on the rainfall availability but also on factors such as land use and 

land cover, geomorphology, social characteristics, etc. Consequently, it is 

necessary that local governments be prepared to assist the population 

occupying at-risk and vulnerable areas. In the Northeast region, the results 

indicate a reduction in the rainfall at the beginning of the rainy season, since the 

DJF trimester is no the peak of the rainy season in the area. The efforts towards 

the mitigation and adaption to the drought events need to continue in order to 

reduce the future impacts. Adaptation measures can be helpful and diminish 

losses (of any kind), although they may not be able to prevent them. The kind 

of analysis performed here joins other efforts that have been made by the 

scientific community to provide climate data projection, so that stakeholders can 

be better prepared regarding climate change issues, and also to encourage 

worldwide awareness regarding the effects of global warming. The extreme 

precipitation events still demand further analysis in order to a better 

understanding the behavior of climate change and the possible changes it 

implies.  
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Figure 1 - Brazilian Amazon region, as indicated by light gray shaded and Northeast 
region, as limited by the dark gray shaded. 
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Figure 2 - Bias between the accumulated rainfall for heavy, very heavy and rare events 
obtained from Eta model simulations and CPC dataset both for the DJF trimester for the 
1980-1990 decade. 

 

Figure 3 - Bias between the accumulated rainfall average for heavy (a), very heavy (b) 
and rare events (c) obtained from Eta model simulations for 2089-2099 and 1980-1990 
for the DJF trimester. Bias between the rainfall contributions for each kind of extreme 
event to the total precipitation accumulated in the domain: heavy events (d), very heavy 
events (e) and rare events (f). 



_________________Revista Brasileira de Climatologia_________________ 
ISSN: 1980-055x (Impressa) 2237-8642 (Eletrônica) 

Ano 13 – Vol. 20 – JAN/JUL 2017                                             133 

 

 

Figure 4 - (a) Mean accumulated rainfall (blue bars) and the mean number of grid points 
where heavy rainfall were detected (red lines) over the Amazon region for time-slices of 
1980-1990 and 2089-2099. (b) same as in (a), however for very heavy events. (c) same 
as in (a), however for rare events. The numbers over blue bars in each panel indicate the 

number of grid points where a specific kind of extreme event occurred for both time-

slices periods. The numbers in the center/bottom of the bars indicates the mean 
accumulated rainfall for each type of extreme event. This figure still brings information of 
bias in percentage (the difference between 2089-2090 and 1980-1990) for total rainfall 
accumulated in each type of event (d), accumulated events or frequency (e), and the 
contribution of each type of rainfall event to the total rainfall precipitated over the 
Amazon region.  In panels d, e and f, TR, RNE, EE-ALL, HE, VHE and RE, respectively, 

denotes for Total Rainfall, Rainfall from Normal Events, Extreme Events – ALL (it includes 
all the three type of extreme events), Heavy Events, Very Heavy Events and Rare Events.   
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Figure 5 - Same as Figure 4, however to the Northeast region. 

LIST OF TABLES 

Table 1 - Resumed tendencies for the measured parameters. Ave = average rainfall (Fig 

4a, b, c; 5a, b, c); Attr = attributed rainfall (Fig 4d; 5d); Freq-Ave = average frequency 

(Fig 4a, b, c; 5a, b, c); Freq-Acc = accumulated frequency (Fig 4e; 5e); Cont = 
contribution to the total rainfall (Fig 4f; 5f). 

 Amazon Northeast 

 
Ave Attr 

Freq 
Cont Ave Attr 

Freq 
Cont 

Ave Acc Ave Acc 

Total Rainfall - ↓ - - - - ↓ - - - 

Normal Rainfall - ↓ - ↓ ↑  ↓ - ↓ ↑ 

Heavy ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ 

Very Heavy ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↑ 

Rare ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

 


