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Abstract: The aim of the current study was to analyze four statistical models using Bayesian inference to 
describe the average daily gain (g) (ADG) during the genetic selection of the Nile Tilapia (Oreochromis 
niloticus “GIFT”). The data set had records from 2,615 fish collected from the fourth generation (G4) of the 
breeding programme in the Floriano Breeding Station of the Universidade Estadual de Maringá, Maringa 
County, Paraná State, Brazil. In these analyses, we considered an animal model where sex was the fixed effect, 
linear and quadratic effects of the fish age was covariates in days in conjunction with the additive genetic 
effects. The models were modified based on the available information from additive genetic effects and 
common environments of hatchery (c), nursery (w), or none of them. The heritability results were estimated 
for the models, M2=0.24 and M4=0.23 and high for M1=0.83 and M3=0.79. The criterion of selection in the 
DIC model was lower for the M1 with -282.59 and higher for M4 with 1754.57. Another criterion of selection 
was the marginal log density of the Bayer factor which corroborates with the DIC only for the lower value in 
which M1=585.29. Less computer efforts to achieve convergence was found using the M1 model with 15,000 
chains, which was the best model to explain and predict the phenomenon.  
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Resumo: O objetivo do estudo atual foi analisar quatro modelos estatísticos usando inferência Bayesiana para 
descrever o ganho diário médio (g) (ADG) durante a seleção genética da Tilapia do Nilo (Oreochromis 
niloticus "GIFT"). O conjunto de dados foi composto por informações de 2.615 peixes, pertencentes a quarta 
geração (G4) do programa de melhoramento de peixes na estação de experimental de Floriano da Universidade 
Estadual de Maringá, município de Maringá, Paraná, Brasil. Nessas análises, consideramos um modelo animal 
em que o sexo foi o efeito fixo, os efeitos lineares e quadráticos da idade do peixe foram covariáveis em dias 
e os efeitos genéticos aditivos. Os modelos foram modificados com base na informação disponível de efeitos 
genéticos aditivos e ambientes comuns de larvicultura (c), alevinagem (w), ou nenhum deles. Os resultados 
para herdabilidade estimados para os modelos, M2 = 0,24 e M4 = 0,23 foram considerados médios e altos para 
M1 = 0,83 e M3 = 0,79. O critério de seleção no modelo DIC foi menor para o M1 com -282,59 e superior 
para M4 com 1754,57. Outro critério de seleção foi a densidade de registro marginal do fator Bayer que 
corrobora com o DIC apenas para o valor mais baixo em que M1 = 585,29. Menos esforços de computador 
para alcançar a convergência foram encontrados utilizando o modelo M1 com 15 mil cadeias, sendo o melhor 
modelo para explicar e prever o fenômeno. 
 
Palavras chave: Fator de Bayes, melhoramento genético, peixe, modelo 
 
Introduction 

In fish breeding, the foremost decision is to 
determine achievements to choose traits to improve 

and, thus, decide strategies of selection 
straightforward to the objectives fixed in the 
programme. In animal production, the expectancy 
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is to find products of high quality, and the breeding 
or the selection have to act as an economic strategy 
to reach the standards of quality facing genetic 
gains in one or various traits necessary to obtain the 
produce. These traits have to be responsive to the 
selection and cost-effective to the fish grower, 
industry and consumers because breeding 
programmes increases the productivity of aquatic 
farming (Gjedrem, 2000; Hulata, 2001). 

The choice of any characteristic as the 
criterion of selection requires strictness on both, 
the quantity and quality of information and know-
how about genetic and phenotypic parameters of 
the productive trait. In Tilapias, the focus of the 
breeding programmes has been limited to growth 
rate (Ponzoni et al., 2005). 

In 2005, the introduction of 30 families of 
Nile Tilapia variety GIFT started the fish breeding 
programme in the Floriano Experimental Station, 
at Maringá County, Paraná State, Brazil. This 
national background with Tilapia has been 
promising positive results because of the positive 
genetic gains. The average daily gain of 2.6% in the 
generation G2 rose to 8.1% in the G3 (Oliveira, 
2011), and may achieve the level of 15% per 
generation under highlighted breeding 
programmes (Ponzoni et al., 2005).  

In fish, the average daily gain (ADG) is 
relevant and important in breeding programmes 
because it is highly correlated with production and 
live weight (g) with estimates of a 0.95 and 0.89 for 
phenotypic and genetic characteristics (Oliveira, 
2011). Easy to record, the ADG has motivated its 
use as the criterion of selection at the breeding 
programme with Tilapia in the Universidade 
Estadual de Maringá. 

Predicting genetic values with excellence 
during the selection requires reliable estimates of 
the variance components. Furthermore, the choice 
of the statistical model is the foremost step to 
analyze the data by choosing a model with less 
parameters but highly efficient in describing the 
response through affordable, safe and precise 
statistical inference (Bozdangan, 1987). Since 
1986 (Gianola & Fernando, 1986), the Bayesian 
inference has been strategically recommended to 
solve animal breeding problems but only in decade 
of 1990 it became a routine in animal breeding 
(Gianola & Foulley, 1990; Jensen et al.,1994; 
Rekaya, 1997).  

The Bayesian theory is underlined in the 
conjunct distribution of sample data named 

likelihood function and a priori distribution about 
the parameters to determine the a posteriori 
distribution based on the product likelihood x 
priori, where is did inferences (Silva et al., 2005). 
In Brazil, it has been largely recommend in animal 
breeding (Magnobosco, 1997; Rosa, 1999). 

In general, the  animal model ݕ = ߚܺ +
ܼܽ +  ݁ accounts for genetic additive and residual 
effects for every individual, although the analyses 
may range according to the data set and the 
available information, i.e. maternal genetic effects, 
common environment, or permanently 
modification in the results and in the genetic merit 
of the animals. Thus, the relevance of the 
information included in the animal model is truly 
important. Misztal (2008) stated that the model 
have to contain the foremost effects or those that 
change the parameters when they are missing, and 
not necessarily because they are statistically 
significant. 

  The model selection obey the criterion 
(Bozdongan, 1987; Wolfinger, 1993; Littel et al., 
2002) based on the maximum likelihood function 
highlighting the likelihood ratio, the Akaike 
criterion (Akaike, 1974) useful for testing two 
models when both are a reparametrization (nestle 
or framed). This criterion admits a real model for 
describing unknown data and choosing among a 
group the model that minimize the divergence of 
Kullback-Leibler (K-L). The best goodness of fit is 
found based on the lower AIC values. The DIC - 
Deviance Information Criterion (Spiegelhalter et 
al., 2002) is similar to the AIC when the fixed 
models are investigated. Furthermore, another 
criterion is the Bayesian from Schwarz (BIC) 
(Schwarz, 1978), when the best fit has the lower 
AIC. The Deviance Information Criterion (DIC) 
(Spiegelhalter et al., 2002) is relatively similar to 
AIC when the model has only fixed effects. 
Another criterion is the (BIC) Bayesian of Schwars 
(Schwarz, 1978) which assumes the existence of 
true model to describe the relation of the dependent 
with the explanatory variables. This model is 
defined as the statistics that maximize the 
probability of identify the true model among other 
under evaluation. The lower BIC indicates the best 
goodness of fit.  

The model choice can be done by the 
relative density of the data applying the log-score 
on the Bayes Factor (FB). The method consists in 
applying the log of marginal probabilities from 
every variate y, conditioned to the other records. 
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The result is a predictive score, or the estimate of 
the data prediction. The Bayes Factor is similar to 
the likelihood test from the frequentist inference 
and can be applied to compare models. 
Mathematically, it is summarized as the following 
deviance, -2logLikelihood (Gelman et al., 2004) or 
D (y|θ) = -2 log [p(y|θ)]. In the BUGS software for 
Bayesian Inference (Gilks, Thomas & 
Spiegelhalter, 1994) this deviance is different of 
the frequentist inference in which the D of the 
reduced is compared to the complete model. In the 
Bayesian inference, the lower expected deviance 
(DIC) is the one with the higher probability a 
posteriori (Gelman et al., 2004). 

The aim of this experiment was to apply 
the Bayesian inference on statistical models to 
discriminate which one allows better goodness of 
fit of parameters to improve the accuracy in the 
GIFT Tilapia selection with genetic outstanding. 

 
Material and methods 

Information from 2,615 fish in the data 
bank of the fourth generation in the breeding 
programme of the Universidade Estadual de 
Maringá (UEM), Paraná State, Brazil were 
analysed in this experiment. The fish had an 
average daily gain of 1.37 ±0.477 g. 

The experiment started in Fish Station of 
the UEM, mating animals of the third generation 
(G3) to obtain the fourth generation (G4). They 
generated clusters of siblings and half-siblings 
individualized by Passive Integrated Transponder 
(PIT) tags (Oliveira, 2011). Soon after the 
recovering period, they were transferred into pond 
nets in Diamante do Norte County, Parana State 
where the average annual temperature in the Corvo 
River was about 24 °C. The animal density was 150 
fish m3 using some animals with no microchips to 
make up the population. The ponds were 
genetically connected with siblings and half-
siblings. 

The data sets were monitored by SAS® 
(Statistical Analysis System) to guarantee the 
information quality through eliminating 
inconsistent records. Thus, the data set had 
information from 2,615 animals in grams. 

Estimates of the covariance components 
were carried out by Gibbs sampling using Bayesian 
inference from the GIBBS1f90 software (Misztal 
et al., 2002). The animal model included the fixed 
effects of sex, linear and quadratic effects of the 
covariate age (d) for the last biometric record (5ª). 

Eight models for uni-characteristics from which 
the most complete -- the number eight (M8) -- have 
the following matrix shape:  

ewZcZaZXy  321 ; 

where: 
y  is the observation vector; 

X , 1Z , 2Z  e Z3, are incidence matrices of 
the environment effects, genetic direct effects and 
common environment of hatchery and nursery, 
respectively; 

  is the vector of sex effects, raising site 
and age; 

a, c, w and e  are, respectively, the vectors 
of additive genetic effects, common environment 
of hatchery, nursery and residual. 

All the models accounted for the additive 
genetic effects and the residual. The model 1 (M1) 
accounted just for the additive genetic effect, the 
M2 for common effect of hatchery (c), the M3 for 
common effect of nursery (w), the M4 for common 
effect of nursery (c) and hatchery (w). The number 
of fish in the parentage matrix (A-1) was 10,301. 

The following Gibbs chains to achieve 
convergence were M1: 15,000; M2: 30,000, M3: 
25,001, M4: 30,000 after burn-in 10% of the initial 
iterative calculation. 

The analyses account for additive genetic 
effects, common effects of hatchery and nursery 
environment and residual as obeying the normal 
distribution and the a priori distribution as non-
informative. Convergence was tested and verified 
by the POSTGIBBSf90 software (Misztal et al., 
2002) through the diagnose test of Geweke (1992) 
and Heidelberg & Welch (1983), in the CODA 
Library (Convergence Diagnosis and Output 
Analysis) version 0.4, developed by Cowles et al. 
(1995) and embed in the R programme (version 
2.8.1 (2008-12-22)). 

 In Bayesian inference, the most 
common method to evaluate the merit of a 
statistical model is to generalize the frequentist 
method, the Akaike information criterion (AIC). 
Spiegelhalter et al. (2002), however, developed an 
information criterion in which the effective number 
of parameter is given by: 

 pD = D* – D(θ”); 
where D(θ) = -2ln p(y|θ) is the deviance 

function,  θ” = E(θ|y) e D*= E(D(θ”)|y) 
The information criterion is the DIC 

(Deviance Information Criterion), given by: 
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DIC = -2 log p(y|θ”) + 2pD. 
D* estimate the model goodness of fit and 

pD gage its complexity. The DIC generalize the 
AIC and small values of the DIC are more adequate 
because they have a weighed fit according to the 
complexity degree. Based on the authors, the 
following criterion may be used: 

D = |DICA – DICB| (for comparing two 
models): 

Whether D < 5:  non-significant; 
Whether 5 ≤ D ≤ 10: significant; 
Whether D > 10: highly significant. 
 
The GIBBS1f90 software have the DIC 

and the Bayes Factor (FB), which is used to select 
models and can be calculated by computational 
methods as the Monte Carlo or numeric method in 
every situation as the Laplace approximation 
method. This factor is related to likelihood ratio 
test where the parameters are maximized rather 
than integrated (Missão, 2007). The FB is the 
measure from data favoring the statistical model. In 
1961, Jeffreys suggested interpret the Factor in 
four intervals. Kass and Raftery (1995) made a 
motion to use two times the log of the FB to 
achieve precision in the intervals. Thus, the value 
has the same scale of likelihood ratio test by using: 

2loge(B10) B10  
0 – 2 1 – 3  = Nonsignificant 

2 – 6 3 – 20 = Significant 

6 -10 20 – 150 = Strong 

> 10 > 150 = Stronger 
 
Based on the DIC and the log of the 

marginal density for FB, we discriminate the 

statistics among the current models. In 
computational terms, the DIC is more attractive 
than the Bayes Factor because the terms can be 
attached in the MCMC routines (Zhu and Carlin, 
2000; Berg, Meyer and Yu (2002). In the current 
study, we made the option by both criteria based on 
the (GIBBS1f90) software. 

 
Results and discussions 

The models M1 (0.17) and M3 (0.16) 
unlike the M2 (0.04) and M4 (0.04) were the best 
explanation for the additive genetic variation. The 
M1 was different about the inclusion of the 
common effect of nursery in the M3 indicating that 
the inclusion of (w²) has little modification in the 
additive genetic variation. M2 and M4 are similar 
about the common effect of nursery (c²) indicating 
that the presence of this effect there is a little 
contribution to understand the additive genetic 
effect. The M4 also has the w² effect. The decrease 
in the genetic variation in this model is 
significantly lower than in the M3, but 
nonsignificant in comparison with the M2.  This 
result indicates harmful interference of the c² 
during the additive genetic variation (Table 1). 

Estimates from the variances in common 
nursery environment (c²) and hatchery (w²) ranged 
from 0.004 to 0.09. The lower residual variances 
was estimate for the models M1 (0.03) and M3 
(0.04) (Table 1). This response in the additive 
genetic variation in the several models about the 
inclusion of the c² and w², or both effects may be 
explained by the content and the figure of every 
variable because these results were estimates from 
the last biometry, the fifty one, where the fish had 
an average age of 294 days when the common 
effects of nursery (c²) were far away in time unlike 
the common effect of the hatchery.  

 
Table 1. Estimates of variance components (σ2) and the covariance for additive genetic effect (σa2), common 
effect of hatchery environment (σc2), common effect of nursery environment (σw2), residual (σe2) and 
phenotypic effect (σw2), for models M1, M2, M3 and M4. 

Models σa
2 covAM σm

2 σc
2 σw

2 σe
2 σy

2 

M1 0.17 - - - - 0.03 0.20 
M2 0.04 - - 0.04 - 0.09 0.18 
M3 0.16 - - - 0.004 0.04 0.20 

M4 0.04 - - 0.04 0.003 0.09 0.18 

The heritability illustrates the relative 
proportion of the genetic and environmental 
influences on genotypic manifestation of the traits 

and indicates the easy or difficult degree to 
improve some traits, from which higher heritability 
means higher facility. Higher herdabilities are 
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presented by M1 with 0.83 and M3 with 0.79 
unlike M2 with 0.24 and M4 with 0.23 (Table 2) 
This result indicate the M1 with capacity to help 
the breeder the best understanding of the genotype 
expression through the phenotype, offering more 
accuracy in the fish selection, and highlighting the 
individual genetic value rather than the family 
values.  

Based on Lush (1936), when the h² of some 
trait is high, it is possible highlight the massal 
selection or discriminate the animals by their 
phenotype values or apparent merit. In contrast, as 
soon as the value is reduced, the individual have to 
be choosing by their intrinsic value, evaluated from 
the family responses.  

 
 
Table 2. Heritability estimates (h²), common effects of hatchery environment (c²) and common effect of 
nursery environment (w²). 

Modelo  h² c² w² 

M1  0.83 - - 
M2  0.24 0.23 - 
M3  0.79 - 0.02 
M4  0.23 0.21 0.02 

 Models: M1;M2;M3 and M4. 
 
Selecting animals with high 

heritability, the genetic gain will be emphasized, 
but under high h² in which the individual response 
is the emphasis rather than families, the risk is to 
lose the variability that is very important for 
breeding programmes. This fact did not occur in 
Tilapia because all the families are maintained 
through selection generation by representative 
progenies. In this case, the best animals from all the 
families in the breeding population are selected to 
guarantee the variability and consequently the 
programme longevity. Thus the M1 model with the 
best explanation of the phenotypic variation 
because the genetic differences in individuals and 
higher h2 may be used without losses in the genetic 
variability in next generations. The M1 have the 
best estimates with higher explanation of the 
additive genetic variation (Table 1) and higher 
heritability (Table 2). The environmental variance 
depends on the farming and management e higher 
variations of the conditions reduce the heritability 
while higher uniformity increases it (Falconer, 
1987). However, the environmental information 
(hatchery and nursery) available can be ignored 
because of the low participation in phenotype 
expression of the ADG, based on the current 
results. 

 Based on the DIC, the best model 
is the M1 because it aggregated only additive 
genetic values and residual effects in its estimates 
with Deviance Information Criterion of -282,59, in 
contrast with the worst goodness of fit for the M4 
with 1754,57 (Table 3). Negative values of DIC are 
possible, as we found in the current experiment 
(DIC M1:-282.59), under some circumstances such 
as sampling distributions log- nonconcave (for 
example, the t-Student) when there is substantial 
conflict in the data a priori, when the distribution a 
posteriori for a parameter is highly asymmetric or 
symmetric bimodal, or the mean a posteriori is 
statistically poor which induce a large bias 
(available in: The Bugs Projec <  http://www.mrc-
bsu.cam.ac.uk/bugs/winbugs/dicpage.shtml#q7> 
outubro, 2013). In parameters of the M1, the a 
posteriori was asymmetric which justifies the 
negative value. 

  The model M1 with the 
lower DIC has lower deviance, because the best 
model has the lower deviance (Gelman et al., 2004) 
where -2log (p) for FB=585.29 (Table 3). 
 The less computational effort was 
found fitting the M1 model with 15,000 chains to 
achieve convergence of parameters (Table 3).  

 
Table 3. DIC estimates, logarithm of the marginal density For the Bayes Factor, and chain number to 
convergence 

Models DIC -2log(p) for 
Bayes Factor 

Chain number 
 

     
M1  -282.59 585.29 15,000 
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M2  1,710.51 1,823.79 30,000 
M3  81.19 912.26 25,001 
M4  1,754.57 1,782.47 30,000 

 
Conclusion 

The most reliable model with lower 
number of effects to explain and predict the 
efficacy the ADG of the Nile Tilapias was the M1. 
It was the best model in explaining the additive 

genetic variation, had higher heritability and better 
values of goodness of fit for DIC and marginal 
density for BF in conjunction with less 
computational effort. 
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